Advertisements
Advertisements
Question
Assertion: Let the matrices A = `((-3, 2),(-5, 4))` and B = `((4, -2),(5, -3))` be such that A100B = BA100
Reason: AB = BA implies AB = BA for all positive integers n.
Options
Both Assertion and Reason are true and Reason is the correct explanation for Assertion.
Both Assertion and Reason are true but Reason is not the correct explanation for Assertion.
Assertion is true and Reason is false.
Assertion is false and Reason is true.
Solution
Both Assertion and Reason are true and Reason is the correct explanation for Assertion.
Explanation:
We have, A = `[(-3, 2),(-5, 4)]`, B = `[(4, -2),(5, -3)]`
Now, AB = `[(-3, 2),(-5, 4)][(4, -2),(5, -3)] = [(-2, 0),(0, -2)]`
And BA = `[(4, -2),(5, -3)][(-3, 2),(-5, 4)] = [(-2, 0),(0, -2)]`
Hence, AB = BA
Now, A2 = `[(-3, 2),(-5, 4)][(-3, 2),(-5, 4)] = [(-1, 2),(-5, 6)]`
So, A2B = `[(-1, 2),(-5, 6)][(4, -2),(5, -3)] = [(6, -4),(10, -8)]`
And BA2 = `[(4, -2),(5, -3)][(-1, 2),(-5, 6)] = [(6, -4),(10, -8)]`
Hence, A2B = BA2
If, AB = BA and A2B = BA2...............
Therefore, AnB = BAn
Also, A100B = BA100
Hence, Assertion and Reason both are true.
APPEARS IN
RELATED QUESTIONS
If A is a square matrix such that A2 = I, then find the simplified value of (A – I)3 + (A + I)3 – 7A.
Find the value of x, y, and z from the following equation:
`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`
if A = [(1,1,1),(1,1,1),(1,1,1)], Prove that A" = `[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]` `n in N`
If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.
Let A = `((2,-1),(3,4))`, B = `((5,2),(7,4))`, C= `((2,5),(3,8))` find a matrix D such that CD − AB = O
Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`
If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| .
If A and B are square matrices of the same order 3, such that ∣A∣ = 2 and AB = 2I, write the value of ∣B∣.
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(5),(4),(-3)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[9 sqrt(2) -3]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(3, 0, 0),(0, 5, 0),(0, 0, 1/3)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Identify the following matrix is singular or non-singular?
`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`
If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, Show that A2 – 4A is a scalar matrix
If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.
If A = `[(6, 0),("p", "q")]` is a scalar matrix, then the values of p and q are ______ respectively.
The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.
Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′?
If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
If a matrix A is both symmetric and skew-symmetric, then ____________.
The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.
If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.
If a matrix A is both symmetric and skew symmetric then matrix A is ____________.
`[(5sqrt(7) + sqrt(7)) + (4sqrt(7) + 8sqrt(7))] - (19)^2` = ?
A matrix is said to be a row matrix, if it has
If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to
A matrix which is both symmetric and skew symmetric matrix is a ______.