Advertisements
Advertisements
Question
Let A = `((2,-1),(3,4))`, B = `((5,2),(7,4))`, C= `((2,5),(3,8))` find a matrix D such that CD − AB = O
Solution
Since A, B and C are all square matrices or order 2 and CD − AB is well defined, D must be a square matrix of order 2.
Let D = `[(a,b),(c,d)]`
Then CD − AB = O gives,
`[(2,5),(3,8)][(a,b),(c,d)] - [(2,-1),(3,4)][(5,2),(7,4)] = O`
`=>[(2a + 5c,2b+5a),(3a+8c, 3b+8a)]-[(3,0),(43,22)] = [(0,0),(0,0)]`
`=>[(2a + 5c - 3, 2b + 5d),(3a + 8c - 43, 3b + 8d - 22)] = [(0,0),(0,0)]`
By equality of matrices we get,
2a + 5c − 3 = 0 ...(1)
3a + 8c − 43 = 0 ...(2)
2b + 5d = 0 ...(3)
3b + 8d − 22 = 0 ...(4)
By solving (1) and (2) we get a = −191 and c = 77.
Similarly, on solving (3) and (4) we get b = - 110 and d = 44.
Therefore,
`D = [(a,b),(c,d)] = [(-191,-110),(77,44)]`
APPEARS IN
RELATED QUESTIONS
If A is a square matrix, such that A2=A, then write the value of 7A−(I+A)3, where I is an identity matrix.
Find the value of x, y, and z from the following equation:
`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`
Find the value of x, y, and z from the following equation:
`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`
if `A = [(0, -tan alpha/2), (tan alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
if A = [(1,1,1),(1,1,1),(1,1,1)], Prove that A" = `[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]` `n in N`
Find the matrix X so that X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`
If A and B are square matrices of order 3 such that |A| = –1, |B| = 3, then find the value of |2AB|.
Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`
If li, mi, ni, i = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]
Show that (A + A') is symmetric matrix, if `A = ((2,4),(3,5))`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[9 sqrt(2) -3]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(10, -15, 27),(-15, 0, sqrt(34)),(27, sqrt(34), 5/3)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Identify the following matrix is singular or non-singular?
`[(7, 5),(-4, 7)]`
Find k if the following matrix is singular:
`[(4, 3, 1),(7, "k", 1),(10, 9, 1)]`
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`
If A = `[(6, 0),("p", "q")]` is a scalar matrix, then the values of p and q are ______ respectively.
Choose the correct alternative:
If A = `[(2, 0),(0, 2)]`, then A2 – 3I = ______
If two matrices A and B are of the same order, then 2A + B = B + 2A.
Show by an example that for A ≠ O, B ≠ O, AB = O
Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′?
If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.
A matrix is said to be a column matrix if it has
If all the elements are zero, then matrix is said to be
A = `[a_(ij)]_(m xx n)` is a square matrix, if
If the sides a, b, c of ΔABC satisfy the equation 4x3 – 24x2 + 47x – 30 = 0 and `|(a^2, (s - a)^2, (s - a)^2),((s - b)^2, b^2, (s - b)^2),((s - c)^2, (s - c)^2, c^2)| = p^2/q` where p and q are co-prime and s is semiperimeter of ΔABC, then the value of (p – q) is ______.
If D = `[(0, aα^2, aβ^2),(bα + c, 0, aγ^2),(bβ + c, (bγ + c), 0)]` is a skew-symmetric matrix (where α, β, γ are distinct) and the value of `|((a + 1)^2, (1 - a), (2 - c)),((3 + c), (b + 2)^2, (b + 1)^2),((3 - b)^2, b^2, (c + 3))|` is λ then the value of |10λ| is ______.
If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.