English

If A=[0-tan α2tan α20] and I is the identity matrix of order 2, show that I + A = (I-A)[cosα-sinαsinαcosα] - Mathematics

Advertisements
Advertisements

Question

if `A = [(0, -tan  alpha/2), (tan  alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`

Sum

Solution

`A = [(0, -tan  alpha/2), (tan  alpha/2, 0)], I = [(1,0),(0,1)]` 

`I + A = [(1,0),(0,1)] + [(0, -tan  alpha/2), (tan  alpha/2, 0)]`

`= [(1, -tan  alpha/2), (tan  alpha/2, 1)]`

`(I - A) [(cos alpha, -sin alpha),(sin alpha, cos alpha)] = ([(1,0),(0,1)] - [(0, -tan alpha/2), (tan alpha/2, 0)]) [(cos alpha, -sin alpha),(sin alpha, cos alpha)]`

`= [(1, tan  alpha/2), (-tan  alpha/2, 1)] [(cos alpha, -sin alpha),(sin alpha, cos alpha)]` 

`= [(1, tan  alpha/2), (-tan  alpha/2, 1)]` `[((1 - tan^2  alpha/2)/(1 + tan^2  alpha/2)(-2  tan  alpha/2)/(1+ tan^2  alpha/2)),((-2 tan  alpha/2)/(1+ tan^2  alpha/2)(1 - tan^2  alpha/2)/(1 + tan^2  alpha/2))]`

`= [((1 + tan^2  alpha/2)/(1 + tan^2  alpha/2)(-tan  alpha/2 - tan^3  alpha/2)/(1+ tan^2  alpha/2)),((tan  alpha/2 + tan^3  alpha/2)/(1+ tan^2  alpha/2)(1 + tan^2  alpha/2)/(1 + tan^2    alpha/2))]`

`= [(1, -tan alpha/2),(tan alpha/2, 1)]`

Hence, `I + A = (I - A) [(cos alpha, -sin alpha),(sin alpha, cos alpha)]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Matrices - Exercise 3.2 [Page 82]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 3 Matrices
Exercise 3.2 | Q 18 | Page 82

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Let A = `[(0,1),(0,0)]`show that (aI+bA)n  = anI + nan-1 bA , where I is the identity matrix of order 2 and n ∈ N


if A = [(1,1,1),(1,1,1),(1,1,1)], Prove that A" = `[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]` `n in N`


if `A = [(3,-4),(1,-1)]` then prove A"=` [(1+2n, -4n),(n, 1-2n)]` where n is any positive integer


Find the matrix X so that  X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`


A coaching institute of English (subject) conducts classes in two batches I and II and fees for rich and poor children are different. In batch I, it has 20 poor and 5 rich children and total monthly collection is Rs 9,000, whereas in batch II, it has 5 poor and 25 rich children and total monthly collection is Rs 26,000. Using matrix method, find monthly fees paid by each child of two types. What values the coaching institute is inculcating in the society?


If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.


If liminii = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]


If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(0, 4, 7),(-4, 0, -3),(-7, 3, 0)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(6, 0),(0, 6)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(3, 0, 0),(0, 5, 0),(0, 0, 1/3)]`


Identify the following matrix is singular or non-singular?

`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`


Identify the following matrix is singular or non-singular?

`[(3, 5, 7),(-2, 1, 4),(3, 2, 5)]`


Find k if the following matrix is singular:

`[(4, 3, 1),(7, "k", 1),(10, 9, 1)]`


Find k if the following matrix is singular:

`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`


Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.


If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.


Select the correct option from the given alternatives:

Given A = `[(1, 3),(2, 2)]`, I = `[(1, 0),(0, 1)]` if A – λI is a singular matrix then _______


Answer the following question:

If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find 2A + B – 5C


Answer the following question:

If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix


If A = `[(2, 0, 0),(0, 1, 0),(0, 0, 1)]`, then |adj (A)| = ______


If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.


If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.


For any square matrix A, AAT is a ____________.


If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.


The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.


If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.


`root(3)(4663) + 349` = ? ÷ 21.003


A diagonal matrix is said to be a scalar matrix if its diagonal elements are


If all the elements are zero, then matrix is said to be


Find X, If `[X - 5 - 1] [(1, 0, 2),(0, 2, 1),(2, 0, 3)][(x),(4),(1)] ` = 0


Let A be a 2 × 2 real matrix with entries from {0, 1} and |A| ≠ 0. Consider the following two statements:

(P) If A1I2, then |A| = –1

(Q) If |A| = 1, then tr(A) = 2,

where I2 denotes 2 × 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then ______.


How many matrices can be obtained by using one or more numbers from four given numbers?


If A = `[(0, -tan  θ/2),(tan  θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______. 


If `A = [(1,-1,2),(0,-1,3)], B = [(-2,1),(3,-1),(0,2)],` then AB is a singular matrix.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×