English

If A = [10-17], find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2. - Mathematics and Statistics

Advertisements
Advertisements

Question

If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.

Sum

Solution

A2 = A · A = `[(1, 0),(-1, 7)] [(1, 0),(-1, 7)]`

= `[(1 - 0, 0 + 0),(-1 - 7, 0 + 49)]`

= `[(1, 0),(-8, 49)]`

∴ A2 – 8A – kI = `[(1, 0),(-8, 49)] - 8 [(1, 0),(-1, 7)] -"k"[(1, 0),(0, 1)]`

= `[(1, 0),(-8, 49)] - [(8, 0),(-8, 56)] - [("k", 0),(0, "k")]`

= `[(1 - 8 - "k", 0 - 0 - 0),(-8 + 8 - 0, 49 - 56 - "k")]`

= `[(-7 - "k", 0),(0, -7 - "k")]`

But A2 – 8A – kI = 0

∴ `[(-7 - "k", 0),(0, -7 - "k")] = [(0, 0),(0, 0)]`

∴ –7 – k = 0

∴ k = – 7.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants and Matrices - Exercise 4.6 [Page 95]

APPEARS IN

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If for any 2 x 2 square matrix A, `A("adj"  "A") = [(8,0), (0,8)]`, then write the value of |A|


Find the value of a, b, c, and d from the equation:

`[(a-b, 2a+c),(2a-b, 3x+d)] = [(-1,5),(0,13)]`


`A = [a_(ij)]_(mxxn)` is a square matrix, if ______.


If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB" = B"A. Further, prove that (AB)" = A"B" for all n ∈ N


If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.


If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______.


Determine the product `[(-4,4,4),(-7,1,3),(5,-3,-1)][(1,-1,1),(1,-2,-2),(2,1,3)]` and use it to solve the system of equations x - y + z = 4, x- 2y- 2z = 9, 2x + y + 3z = 1.


Use product `[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)]` to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3


if the matrix A =`[(0,a,-3),(2,0,-1),(b,1,0)]` is skew symmetric, Find the value of 'a' and 'b'


Given `A = [(2,-3),(-4,7)]` compute `A^(-1)` and show that `2A^(-1) = 9I - A`


If A and B are square matrices of order 3 such that |A| = –1, |B| = 3, then find the value of |2AB|.


If liminii = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]


Show that (A + A') is symmetric matrix, if `A = ((2,4),(3,5))`


if  `vec"a"= 2hat"i" + 3hat"j"+ hat"k", vec"b" = hat"i" -2hat"j" + hat"k" and vec"c" = -3hat"i" + hat"j" + 2hat"k", "find" [vec"a" vec"b" vec"c"]`


Choose the correct alternative.

The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(3, -2, 4),(0, 0, -5),(0, 0, 0)]`


Find k if the following matrix is singular:

`[(4, 3, 1),(7, "k", 1),(10, 9, 1)]`


If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.


Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.


Select the correct option from the given alternatives:

If A and B are square matrices of equal order, then which one is correct among the following?


Answer the following question:

If A = `[(1, 2),(3, 2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, -3)]`, show that AB is singular.


Choose the correct alternative:

If B = `[(6, 3),(-2, "k")]` is singular matrix, then the value of k is ______


Choose the correct alternative:

If A = `[(2, 0),(0, 2)]`, then A2 – 3I = ______


The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.


Show by an example that for A ≠ O, B ≠ O, AB = O


If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`


If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.


For any square matrix A, AAT is a ____________.


The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.


If a matrix A is both symmetric and skew symmetric then matrix A is ____________.


`root(3)(4663) + 349` = ? ÷ 21.003


A matrix is said to be a column matrix if it has


If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to


Find X, If `[X - 5 - 1] [(1, 0, 2),(0, 2, 1),(2, 0, 3)][(x),(4),(1)] ` = 0


The minimum number of zeros in an upper triangular matrix will be ______.


If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.


Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.


If `A = [(1,-1,2),(0,-1,3)], B = [(-2,1),(3,-1),(0,2)],` then AB is a singular matrix.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×