Advertisements
Advertisements
Question
Find the value of a, b, c, and d from the equation:
`[(a-b, 2a+c),(2a-b, 3x+d)] = [(-1,5),(0,13)]`
Solution
`[(a-b, 2a+c),(2a-b, 3x+d)] = [(-1,5),(0,13)]`
As the two matrices are equal, their corresponding elements are also equal.
Comparing the corresponding elements, we get:
a − b = −1 ....(1)
2a − b = 0 ....(2)
2a + c = 5 ....(3)
3c + d = 13 ...(4)
From (2), we have:
b = 2a
Then, from (1), we have:
a − 2a = −1
⇒ a = 1
⇒ b = 2
Now, from (3), we have:
2 ×1 + c = 5
⇒ c = 3
From (4) we have:
3 ×3 + d = 13
⇒ 9 + d = 13
⇒ d = 4
∴ a = 1, b = 2, c = 3, and d = 4
APPEARS IN
RELATED QUESTIONS
If A is a square matrix, such that A2=A, then write the value of 7A−(I+A)3, where I is an identity matrix.
Let A = `[(0,1),(0,0)]`show that (aI+bA)n = anI + nan-1 bA , where I is the identity matrix of order 2 and n ∈ N
If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB" = B"A. Further, prove that (AB)" = A"B" for all n ∈ N
Using coding matrix A=`[(2,1),(3,1)]` encode the message THE CROW FLIES AT MIDNIGHT.
Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`
Investigate for what values of λ and μ the equations
2x + 3y + 5z = 9
7x + 3y - 2z = 8
2x + 3y + λz = μ have
A. No solutions
B. Unique solutions
C. An infinite number of solutions.
If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| .
If A and B are square matrices of the same order 3, such that ∣A∣ = 2 and AB = 2I, write the value of ∣B∣.
Choose the correct alternative.
The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Identify the following matrix is singular or non-singular?
`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`
Identify the following matrix is singular or non-singular?
`[(7, 5),(-4, 7)]`
Find k if the following matrix is singular:
`[(7, 3),(-2, "k")]`
Find k if the following matrix is singular:
`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`
If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2
Answer the following question:
If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices
Choose the correct alternative:
If B = `[(6, 3),(-2, "k")]` is singular matrix, then the value of k is ______
State whether the following statement is True or False:
If A is non singular, then |A| = 0
If A = `[(2, 0, 0),(0, 1, 0),(0, 0, 1)]`, then |adj (A)| = ______
The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.
A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.
If A is a square matrix, then A – A’ is a ____________.
If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.
If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.
A diagonal matrix is said to be a scalar matrix if its diagonal elements are
The number of all possible matrices of order 3/3, with each entry 0 or 1 is
A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.
If the sides a, b, c of ΔABC satisfy the equation 4x3 – 24x2 + 47x – 30 = 0 and `|(a^2, (s - a)^2, (s - a)^2),((s - b)^2, b^2, (s - b)^2),((s - c)^2, (s - c)^2, c^2)| = p^2/q` where p and q are co-prime and s is semiperimeter of ΔABC, then the value of (p – q) is ______.
If A = `[(0, -tan θ/2),(tan θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______.
If A = `[(5, x),(y, 0)]` and A = AT, where AT is the transpose of the matrix A, then ______.
If A is a square matrix of order 3, then |2A| is equal to ______.