English

If a and B Are Square Matrices of the Same Order 3, Such that ∣A∣ = 2 and Ab = 2i, Write the Value of ∣B∣. - Mathematics

Advertisements
Advertisements

Question

If A and B are square matrices of the same order 3, such that ∣A∣ = 2 and AB = 2I, write the value of ∣B∣.

Sum

Solution

We have, AB = 2I

`|"AB"| = |2"I"|`

⇒ `|"A"| |"B"| = 8`

⇒ `2 |"B"| = 8        ...("Given" |"A"| = 2)`

⇒ `|"B"| = 4`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/1/1

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

 If A is a square matrix such that A2 = I, then find the simplified value of (A – I)3 + (A + I)3 – 7A.


If A is a square matrix, such that A2=A, then write the value of 7A(I+A)3, where I is an identity matrix.


If for any 2 x 2 square matrix A, `A("adj"  "A") = [(8,0), (0,8)]`, then write the value of |A|


if `A = [(0, -tan  alpha/2), (tan  alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`


If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB" = B"A. Further, prove that (AB)" = A"B" for all n ∈ N


If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.


If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______.


A coaching institute of English (subject) conducts classes in two batches I and II and fees for rich and poor children are different. In batch I, it has 20 poor and 5 rich children and total monthly collection is Rs 9,000, whereas in batch II, it has 5 poor and 25 rich children and total monthly collection is Rs 26,000. Using matrix method, find monthly fees paid by each child of two types. What values the coaching institute is inculcating in the society?


Show that a matrix A = `1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]` is unitary.


If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.


If A = `[[0 , 2],[3, -4]]` and kA = `[[0 , 3"a"],[2"b", 24]]` then find the value of k,a and b.


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(0, 4, 7),(-4, 0, -3),(-7, 3, 0)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[9   sqrt(2)  -3]`


Identify the following matrix is singular or non-singular?

`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`


Find k if the following matrix is singular:

`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.


If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.


Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


State whether the following statement is True or False:

If A is non singular, then |A| = 0


State whether the following statement is True or False:

If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2 


If A = `[(2, 0, 0),(0, 1, 0),(0, 0, 1)]`, then |adj (A)| = ______


If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2


The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.


AB = AC ⇒ B = C for any three matrices of same order.


`[(5sqrt(7) + sqrt(7)) + (4sqrt(7) + 8sqrt(7))] - (19)^2` = ?


If `[(1, 2, 1),(2, 3, 1),(3, a, 1)]` is non-singular matrix and a ∈ A, then the set A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×