English

If A = [αβγ-α] is such that A2 = I then ______. - Mathematics

Advertisements
Advertisements

Question

If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.

Options

  • 1 + α² + βγ = 0

  • 1 – α² + βγ = 0

  • 1 – α² – βγ = 0

  • 1 + α² – βγ = 0

MCQ
Fill in the Blanks

Solution

If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then 1 – α² – βγ = 0.

Explanation:

A = `[(alpha, beta), (ϒ, -alpha)]`

`"A"^2 = "A" * "A"[(alpha, beta), (ϒ, -alpha)][(alpha, beta), (ϒ, -alpha)]`

= `[(alpha^2 + betaϒ, alphabeta - alphabeta), (alphaϒ - alphaϒ, betaϒ + alpha^2)] = [(1, 0), (0, 1)]`

Now, A2 = I

⇒ `[(alpha^2 + betaϒ,0), (0, betaϒ + alpha^2)] = [(1, 0), (0, 1)]`

α2 + βγ = 1 or 1 – α2 – βγ = 0

Accordingly, option (1 - α2 - βγ = 0) is correct.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Matrices - Exercise 3.5 [Page 101]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 3 Matrices
Exercise 3.5 | Q 13 | Page 101

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

if A = [(1,1,1),(1,1,1),(1,1,1)], Prove that A" = `[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]` `n in N`


Determine the product `[(-4,4,4),(-7,1,3),(5,-3,-1)][(1,-1,1),(1,-2,-2),(2,1,3)]` and use it to solve the system of equations x - y + z = 4, x- 2y- 2z = 9, 2x + y + 3z = 1.


Given `A = [(2,-3),(-4,7)]` compute `A^(-1)` and show that `2A^(-1) = 9I - A`


If A and B are square matrices of order 3 such that |A| = –1, |B| = 3, then find the value of |2AB|.


If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.


Using coding matrix A=`[(2,1),(3,1)]` encode the message THE CROW FLIES AT MIDNIGHT.


Investigate for what values of λ and μ the equations
2x + 3y + 5z = 9
7x + 3y - 2z = 8
2x + 3y + λz = μ have
A. No solutions
B. Unique solutions
C. An infinite number of solutions.


If liminii = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]


Choose the correct alternative.

The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(6, 0),(0, 6)]`


Identify the following matrix is singular or non-singular?

`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`


Identify the following matrix is singular or non-singular?

`[(7, 5),(-4, 7)]`


Find k if the following matrix is singular:

`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.


If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.


Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, Show that A2 – 4A is a scalar matrix 


Answer the following question:

If A = `[(1, 2),(3, 2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, -3)]`, show that AB is singular.


Answer the following question:

If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix


State whether the following statement is True or False:

If A is non singular, then |A| = 0


If A and B are matrices of same order, then (3A –2B)′ is equal to______.


If two matrices A and B are of the same order, then 2A + B = B + 2A.


Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′? 


If A is a square matrix, then A – A’ is a ____________.


The matrix `[(0,-5,8),(5,0,12),(-8,-12,0)]`  is a ____________.


If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.


If a matrix A is both symmetric and skew symmetric then matrix A is ____________.


`root(3)(4663) + 349` = ? ÷ 21.003


`[(5sqrt(7) + sqrt(7)) + (4sqrt(7) + 8sqrt(7))] - (19)^2` = ?


A square matrix B = [bÿ] m × m is said to be a diagonal matrix if all diagonal elements are


A square matrix in which elements in the diagonal are all 1 and rest are all zero is called an


If all the elements are zero, then matrix is said to be


The number of all possible matrices of order 3/3, with each entry 0 or 1 is


The minimum number of zeros in an upper triangular matrix will be ______.


If `[(1, 2, 1),(2, 3, 1),(3, a, 1)]` is non-singular matrix and a ∈ A, then the set A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×