English

Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix: [3-2400-5000] - Mathematics and Statistics

Advertisements
Advertisements

Question

Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(3, -2, 4),(0, 0, -5),(0, 0, 0)]`

Sum

Solution

Let A = `[(3, -2, 4),(0, 0, -5),(0, 0, 0)]`

Since all the elements below the diagonal are zero in matrix A., it is an upper triangular matrix.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants and Matrices - Exercise 4.4 [Page 82]

APPEARS IN

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If A is a square matrix, such that A2=A, then write the value of 7A(I+A)3, where I is an identity matrix.


Find the value of x, y, and z from the following equation:

`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`


Find the value of x, y, and z from the following equation:

`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`


Let A = `[(0,1),(0,0)]`show that (aI+bA)n  = anI + nan-1 bA , where I is the identity matrix of order 2 and n ∈ N


Find the matrix X so that  X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`


In a certain city there are 30 colleges. Each college has 15 peons, 6 clerks, 1 typist and 1 section officer. Express the given information as a column matrix. Using scalar multiplication, find the total number of posts of each kind in all the colleges.


A coaching institute of English (subject) conducts classes in two batches I and II and fees for rich and poor children are different. In batch I, it has 20 poor and 5 rich children and total monthly collection is Rs 9,000, whereas in batch II, it has 5 poor and 25 rich children and total monthly collection is Rs 26,000. Using matrix method, find monthly fees paid by each child of two types. What values the coaching institute is inculcating in the society?


If ЁЭТЩ = r cos θ and y= r sin θ prove that JJ-1=1.


Using coding matrix A=`[(2,1),(3,1)]` encode the message THE CROW FLIES AT MIDNIGHT.


If A = `[[0 , 2],[3, -4]]` and kA = `[[0 , 3"a"],[2"b", 24]]` then find the value of k,a and b.


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(5),(4),(-3)]`


Identify the following matrix is singular or non-singular?

`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`


Identify the following matrix is singular or non-singular?

`[(7, 5),(-4, 7)]`


Find k if the following matrix is singular:

`[(7, 3),(-2, "k")]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.


If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2


Answer the following question:

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices


Answer the following question:

If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix


State whether the following statement is True or False:

If A is non singular, then |A| = 0


If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2


If two matrices A and B are of the same order, then 2A + B = B + 2A.


Show by an example that for A ≠ O, B ≠ O, AB = O


If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.


If A `= [("cos x", - "sin x"),("sin x", "cos x")]`, find AAT.


The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.


The matrix `[(0,-5,8),(5,0,12),(-8,-12,0)]`  is a ____________.


`root(3)(4663) + 349` = ? ÷ 21.003


A diagonal matrix is said to be a scalar matrix if its diagonal elements are


A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.


The minimum number of zeros in an upper triangular matrix will be ______.


How many matrices can be obtained by using one or more numbers from four given numbers?


Assertion: Let the matrices A = `((-3, 2),(-5, 4))` and B = `((4, -2),(5, -3))` be such that A100B = BA100

Reason: AB = BA implies AB = BA for all positive integers n.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×