Advertisements
Advertisements
प्रश्न
Assertion: Let the matrices A = `((-3, 2),(-5, 4))` and B = `((4, -2),(5, -3))` be such that A100B = BA100
Reason: AB = BA implies AB = BA for all positive integers n.
विकल्प
Both Assertion and Reason are true and Reason is the correct explanation for Assertion.
Both Assertion and Reason are true but Reason is not the correct explanation for Assertion.
Assertion is true and Reason is false.
Assertion is false and Reason is true.
उत्तर
Both Assertion and Reason are true and Reason is the correct explanation for Assertion.
Explanation:
We have, A = `[(-3, 2),(-5, 4)]`, B = `[(4, -2),(5, -3)]`
Now, AB = `[(-3, 2),(-5, 4)][(4, -2),(5, -3)] = [(-2, 0),(0, -2)]`
And BA = `[(4, -2),(5, -3)][(-3, 2),(-5, 4)] = [(-2, 0),(0, -2)]`
Hence, AB = BA
Now, A2 = `[(-3, 2),(-5, 4)][(-3, 2),(-5, 4)] = [(-1, 2),(-5, 6)]`
So, A2B = `[(-1, 2),(-5, 6)][(4, -2),(5, -3)] = [(6, -4),(10, -8)]`
And BA2 = `[(4, -2),(5, -3)][(-1, 2),(-5, 6)] = [(6, -4),(10, -8)]`
Hence, A2B = BA2
If, AB = BA and A2B = BA2...............
Therefore, AnB = BAn
Also, A100B = BA100
Hence, Assertion and Reason both are true.
APPEARS IN
संबंधित प्रश्न
Find the value of x, y, and z from the following equation:
`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`
If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB" = B"A. Further, prove that (AB)" = A"B" for all n ∈ N
If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______.
Given two matrices A and B
`A = [(1,-2,3),(1,4,1),(1,-3, 2)] and B = [(11,-5,-14),(-1, -1,2),(-7,1,6)]`
find AB and use this result to solve the following system of equations:
x - 2y + 3z = 6, x + 4x + z = 12, x - 3y + 2z = 1
If A and B are square matrices of order 3 such that |A| = –1, |B| = 3, then find the value of |2AB|.
If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.
if `vec"a"= 2hat"i" + 3hat"j"+ hat"k", vec"b" = hat"i" -2hat"j" + hat"k" and vec"c" = -3hat"i" + hat"j" + 2hat"k", "find" [vec"a" vec"b" vec"c"]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(0, 4, 7),(-4, 0, -3),(-7, 3, 0)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(5),(4),(-3)]`
Identify the following matrix is singular or non-singular?
`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`
Find k if the following matrix is singular:
`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.
Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.
If A = `[(6, 0),("p", "q")]` is a scalar matrix, then the values of p and q are ______ respectively.
If A and B are matrices of same order, then (3A –2B)′ is equal to______.
For the non singular matrix A, (A′)–1 = (A–1)′.
Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′?
If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.
If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.
`root(3)(4663) + 349` = ? ÷ 21.003
A diagonal matrix is said to be a scalar matrix if its diagonal elements are
A square matrix in which elements in the diagonal are all 1 and rest are all zero is called an
If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to
The minimum number of zeros in an upper triangular matrix will be ______.
If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.