मराठी

The Sum of the Surface Areas of a Cuboid with Sides X, 2x And \[\Frac{X}{3}\] and a Sphere is Given to Be Constant - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.

उत्तर

Surface area of cuboid = 2 (lb + bh + hl)

\[= \left( 2 x^2 + \frac{2 x^2}{3} + \frac{x^2}{3} \right)\]

\[ = 6 x^2\]

Let radius of the sphere be r,
Surface area of sphere = \[4\pi r^2\]

Therefore,

\[6 x^2 + 4\pi r^2 = k(\text { constant })\] .....(i)
Now, volume of both figures will be \[V = \frac{2}{3} x^3 + \frac{4}{3}\pi r^3\]

Putting the value of r from the equation (i), 

\[V = \frac{2}{3} x^3 + \frac{4}{3}\pi \left( \frac{k - 6 x^2}{4\pi} \right)^\frac{3}{2}\]

For minimum volume \[\frac{dV}{dx} = 0\], so

\[\frac{dV}{dx} = 2 x^2 + \left( \frac{4}{3}\pi \right) \left( \frac{1}{4\pi} \right)^\frac{3}{2} . \frac{3}{2} \left( k - 6 x^2 \right)^\frac{1}{2} \left( - 12x \right) = 0\]

\[ \Rightarrow 2 x^2 = \left( \frac{1}{4\pi} \right)^\frac{1}{2} \left( k - 6 x^2 \right)^\frac{1}{2} \left( 6x \right)\]

\[ \Rightarrow 2 x^2 = \left( \frac{1}{4\pi} \right)^\frac{1}{2} \left( 4\pi r^2 \right)^\frac{1}{2} \left( 6x \right) \left[ \text { since }, k - 6 x^2 = 4\pi r^2 \right]\]

\[ \Rightarrow x = 3r\]

Hence proved.
Further, minimum value of sum of their volume is

\[V_\min = \frac{2}{3} x^3 + \frac{4}{3}\pi r^3 \]

\[ = \frac{2}{3} x^3 + \frac{4}{3}\pi \left( \frac{x}{3} \right)^3 \left[ r = \frac{x}{3} \right]\]

\[ = \frac{2}{3} x^3 + \frac{4}{3}\pi\frac{x^3}{27} \]

\[ = \frac{2}{3} x^3 \left( 1 + \frac{2}{27} \right)\]

\[ = \frac{58}{81} x^3 \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) Foreign Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) =  (x \[-\] 1) (x+2)2


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) =  cos x, 0 < x < \[\pi\] .


`f(x) = x/2+2/x, x>0 `.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Find the maximum and minimum values of y = tan \[x - 2x\] .


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write the point where f(x) = x log, x attains minimum value.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


Write the minimum value of f(x) = xx .


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×