Advertisements
Advertisements
प्रश्न
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.
उत्तर
Surface area of cuboid = 2 (lb + bh + hl)
\[= \left( 2 x^2 + \frac{2 x^2}{3} + \frac{x^2}{3} \right)\]
\[ = 6 x^2\]
Let radius of the sphere be r,
Surface area of sphere = \[4\pi r^2\]
Therefore,
\[6 x^2 + 4\pi r^2 = k(\text { constant })\] .....(i)
Now, volume of both figures will be \[V = \frac{2}{3} x^3 + \frac{4}{3}\pi r^3\]
Putting the value of r from the equation (i),
\[V = \frac{2}{3} x^3 + \frac{4}{3}\pi \left( \frac{k - 6 x^2}{4\pi} \right)^\frac{3}{2}\]
For minimum volume \[\frac{dV}{dx} = 0\], so
\[\frac{dV}{dx} = 2 x^2 + \left( \frac{4}{3}\pi \right) \left( \frac{1}{4\pi} \right)^\frac{3}{2} . \frac{3}{2} \left( k - 6 x^2 \right)^\frac{1}{2} \left( - 12x \right) = 0\]
\[ \Rightarrow 2 x^2 = \left( \frac{1}{4\pi} \right)^\frac{1}{2} \left( k - 6 x^2 \right)^\frac{1}{2} \left( 6x \right)\]
\[ \Rightarrow 2 x^2 = \left( \frac{1}{4\pi} \right)^\frac{1}{2} \left( 4\pi r^2 \right)^\frac{1}{2} \left( 6x \right) \left[ \text { since }, k - 6 x^2 = 4\pi r^2 \right]\]
\[ \Rightarrow x = 3r\]
Hence proved.
Further, minimum value of sum of their volume is
\[V_\min = \frac{2}{3} x^3 + \frac{4}{3}\pi r^3 \]
\[ = \frac{2}{3} x^3 + \frac{4}{3}\pi \left( \frac{x}{3} \right)^3 \left[ r = \frac{x}{3} \right]\]
\[ = \frac{2}{3} x^3 + \frac{4}{3}\pi\frac{x^3}{27} \]
\[ = \frac{2}{3} x^3 \left( 1 + \frac{2}{27} \right)\]
\[ = \frac{58}{81} x^3 \]
APPEARS IN
संबंधित प्रश्न
f(x) = (x \[-\] 1) (x+2)2.
f(x) = x3 \[-\] 6x2 + 9x + 15 .
f(x) = cos x, 0 < x < \[\pi\] .
`f(x) = x/2+2/x, x>0 `.
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Find the maximum and minimum values of y = tan \[x - 2x\] .
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write the point where f(x) = x log, x attains minimum value.
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the minimum value of f(x) = xx .
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?