मराठी

F(X) = (X − 1) (X+2)2. - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) =  (x \[-\] 1) (x+2)2

बेरीज

उत्तर

\[\text { Given }: f\left( x \right) = \left( x - 1 \right) \left( x + 2 \right)^2 \]

\[ \Rightarrow f'\left( x \right) = \left( x + 2 \right)^2 + 2\left( x + 2 \right)\left( x - 1 \right)\]

\[\text{ For a local maximum or a local minimum, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow \left( x + 2 \right)^2 + 2\left( x + 2 \right)\left( x - 1 \right) = 0\]

\[ \Rightarrow \left( x + 2 \right)\left( x + 2 + 2x - 2 \right) = 0\]

\[ \Rightarrow \left( x + 2 \right)\left( 3x \right) = 0\]

\[ \Rightarrow x = 0, - 2\]

Since  f '(x) changes from negative to positive when x increases through 0, x = 0 is the point of local minima.

The local minimum value of  f (x) at x = 0 is given by \[\left( 0 - 1 \right) \left( 0 + 2 \right)^2 = - 4\] 

Since  f '(x) changes sign from positive to negative when x increases through \[- 2\] ,x = \[- 2\] is the point of local maxima.
The local maximum value of  f (x)  at x = \[- 2\] is given by

\[\left( - 2 - 1 \right) \left( - 2 + 2 \right)^2 = 0\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.2 | Q 4 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x)=sin 2x+5 on R .


f(x) = | sin 4x+3 | on R ?


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = x\[-\] 1 on R .


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  cos x, 0 < x < \[\pi\] .


`f(x) = 2/x - 2/x^2,  x>0`


f(x) = xex.


`f(x) = x/2+2/x, x>0 `.


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


The maximum value of x1/x, x > 0 is __________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×