मराठी

The Maximum Value of X1/X, X > 0 is - Mathematics

Advertisements
Advertisements

प्रश्न

The maximum value of x1/x, x > 0 is __________ .

पर्याय

  • `e^(1/e)`

  • `(1/e)^e`

  • 1

  • none of these

MCQ

उत्तर

\[e^\frac{1}{e}\]

\[\text { Given }:   f\left( x \right)   =    x^\frac{1}{x} \] 
\[\text { Taking  log  on  both  sides,   we  get }\] 
\[\log  f\left( x \right) = \frac{1}{x}\log  x\] 
\[\text { Differentiating  w . r . t .   x,   we  get }\] 
\[\frac{1}{f\left( x \right)}f'\left( x \right) = \frac{- 1}{x^2}\log  x + \frac{1}{x^2}\] 
\[ \Rightarrow f'\left( x \right) = f\left( x \right)\frac{1}{x^2}\left( 1 - \log  x \right)\] 
\[ \Rightarrow f'\left( x \right) =  x^\frac{1}{x} \left( \frac{1}{x^2} - \frac{1}{x^2}\log  x \right)                                   .  .  . \left( 1 \right)\] 
\[ \Rightarrow f'\left( x \right) =  x^\frac{1}{x} - 2 \left( 1 - \log  x \right)       \]
\[\text { For  a  local  maxima  or  a  local  minima,   we  must  have }\] 
\[f'\left( x \right) = 0\] 
\[ \Rightarrow  x^\frac{1}{x} - 2 \left( 1 - \log  x \right) = 0\] 
\[ \Rightarrow \log  x = 1\] 
\[ \Rightarrow x = e\]
\[\text { Now,} \] 
\[f''\left( x \right)   =  x^\frac{1}{x}  \left( \frac{1}{x^2} - \frac{1}{x^2}\log  x \right)^2  +  x^\frac{1}{x} \left( \frac{- 2}{x^3} + \frac{2}{x^3}\log  x - \frac{1}{x^3} \right) =  x^\frac{1}{x}  \left( \frac{1}{x^2} - \frac{1}{x^2}\log  x \right)^2  +  x^\frac{1}{x} \left( - \frac{3}{x^3} + \frac{2}{x^3}\log  x \right)\] 
\[\text { At  }x = e: \] 
\[f''\left( e \right)   =  e^\frac{1}{e}  \left( \frac{1}{e^2} - \frac{1}{e^2}\log  e \right)^2  +  e^\frac{1}{e} \left( - \frac{3}{e^3} + \frac{2}{e^3}\log  e \right) =  -  e^\frac{1}{e} \left( \frac{1}{e^3} \right) < 0\] 
\[\text { So,   x = e  is  a  point  of  local  maxima }. \] 
\[ \therefore   \text { Maximum  value } = f\left( e \right)   =    e^\frac{1}{e} \] 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.7 | Q 1 | पृष्ठ ८०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = - (x-1)2+2 on R ?


f(x) = | sin 4x+3 | on R ?


f(x) = x\[-\] 1 on R .


f(x) = x4 \[-\] 62x2 + 120x + 9.


f(x) = (x - 1) (x + 2)2.


f(x) = xex.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


Write necessary condition for a point x = c to be an extreme point of the function f(x).


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


The minimum value of x loge x is equal to ____________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×