Advertisements
Advertisements
प्रश्न
f(x) = xex.
उत्तर
\[\text { Given: } \hspace{0.167em} f\left( x \right) = x e^x \]
\[ \Rightarrow f'\left( x \right) = e^x + x e^x \]
\[\text { For the local maxima or minima, we must have }\]
\[ f'\left( x \right) = 0\]
\[ \Rightarrow e^x + x e^x = 0\]
\[ \Rightarrow e^x \left( 1 + x \right) = 0\]
\[ \Rightarrow e^x \neq 0 , x = - 1\]
\[ \Rightarrow x = - 1\]
\[\text { Thus, x = - 1 is the possible point of local maxima or local minima } . \]
\[\text { Now,} \]
\[f''\left( x \right) = e^x + e^x + x e^x \]
\[\text { At } x = - 1: \]
\[ f''\left( - 1 \right) = e^{- 1} + e^{- 1} - e^{- 1} = e^{- 1} > 0\]
\[\text { So, x = - 1 is the point of local minimum } . \]
\[\text { The local minimum value is given by }\]
\[f\left( - 1 \right) = - e^{- 1} = - \frac{1}{e}\]
APPEARS IN
संबंधित प्रश्न
f(x) = - (x-1)2+2 on R ?
f(x)=sin 2x+5 on R .
f(x) = x3 \[-\] 6x2 + 9x + 15 .
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
f(x) =\[x\sqrt{1 - x} , x > 0\].
f(x) = x3\[-\] 6x2 + 9x + 15
f(x) = (x - 1) (x + 2)2.
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?
Which of the following graph represents the extreme value:-