मराठी

F(X) = 1+2 Sin X+3 Cos2x, 0 ≤ X ≤ 2 π 3 is - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .

पर्याय

  • Minimum at x =\[\frac{\pi}{2}\]

  • Maximum at x = sin \[- 1\] ( \[\frac{1}{\sqrt{3}}\])

  • Minimum at x = \[\frac{\pi}{6}\]

  • Maximum at `sin^-1(1/6)`

MCQ

उत्तर

\[\text { Minimum at } x = \frac{\pi}{2}\]

 

\[\text { Given }: f\left( x \right) = 1 + 2 \sin x + 3 \cos^2 x\]

\[ \Rightarrow f'\left( x \right) = 2 \cos x - 6 \cos x \sin x\]

\[ \Rightarrow f'\left( x \right) = 2 \cos x\left( 1 - 3 \sin x \right)\]

\[\text { For a local maxima or a local minima, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 2 \cos x\left( 1 - 3 \sin x \right) = 0\]

\[ \Rightarrow 2 \cos x = 0 or \left( 1 - 3 \sin x \right) = 0\]

\[ \Rightarrow \cos x = 0 \ or \sin x = \frac{1}{3}\]

\[ \Rightarrow x = \frac{\pi}{2} or x = \sin^{- 1} \left( \frac{1}{3} \right)\]

\[\text { Now,} \]

\[f''\left( x \right) = - 2 \sin x - 6 \cos 2x\]

\[ \Rightarrow f''\left( \frac{\pi}{2} \right) = - 2 \sin \frac{\pi}{2} - 6 \cos \left( 2 \times \frac{\pi}{2} \right) = - 2 + 6 = 4 > 0\]

\[\text { So, x } = \frac{\pi}{2} \text { is a local minima }.\]

\[\text { Also }, \]

\[f''\left( \sin^{- 1} \left( \frac{1}{3} \right) \right) = - 2 \sin \left( \sin^{- 1} \left( \frac{1}{3} \right) \right) - 6 \cos \left( \sin^{- 1} \left( \frac{1}{3} \right) \right) = \frac{- 2}{3} - 6 \times \frac{2\sqrt{2}}{3} = - \left( \frac{2}{3} + 4\sqrt{2} \right) < 0\]

\[\text { So,} x = \sin^{- 1} \left( \frac{1}{3} \right)\text {  is a local maxima }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.7 | Q 24 | पृष्ठ ८२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = - (x-1)2+2 on R ?


f(x) = x\[-\] 3x .


f(x) = x3  (x \[-\] 1).


f(x) =\[x\sqrt{1 - x} , x > 0\].


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) = x4 \[-\] 62x2 + 120x + 9.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


The maximum value of x1/x, x > 0 is __________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


If x+y=8, then the maximum value of xy is ____________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


The minimum value of x loge x is equal to ____________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×