मराठी

Find the Maximum Value of 2x3 − 24x + 107 in the Interval [1,3]. Find the Maximum Value of the Same Function in [ − 3, − 1]. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].

बेरीज

उत्तर

\[\text { Given:} f\left( x \right) = 2 x^3 - 24x + 107\]

\[ \Rightarrow f'\left( x \right) = 6 x^2 - 24\]

\[\text { For a local maximum or a local minimum, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 6 x^2 - 24 = 0\]

\[ \Rightarrow 6 x^2 = 24\]

\[ \Rightarrow x^2 = 4\]

\[ \Rightarrow x = \pm 2\]

\[\text { Thus, the critical points of f in the interval } \left[ 1, 3 \right] \text { are 1, 2 and 3 } . \]

\[\text { Now,} \]

\[ f\left( 1 \right) = 2 \left( 1 \right)^3 - 24\left( 1 \right) + 107 = 85\]

\[f\left( 2 \right) = 2 \left( 2 \right)^3 - 24\left( 2 \right) + 107 = 75\]

\[f\left( 3 \right) = 2 \left( 3 \right)^3 - 24\left( 3 \right) + 107 = 89\]

\[\text { Hence, the absolute maximum value when x = 3 in the interval } \left[ 1, 3 \right] is 89 . \]

\[\text { Again, the critical points of f in the interval } \left[ - 3, - 1 \right] \text {are - 1, - 2  and } - 3 . \]

\[\text { So }, \]

\[f\left( - 3 \right) = 2 \left( - 3 \right)^3 - 24\left( - 3 \right) + 107 = 125\]

\[f\left( - 2 \right) = 2 \left( - 2 \right)^3 - 24\left( - 2 \right) + 107 = 139\]

\[f\left( - 1 \right) = 2 \left( - 1 \right)^3 - 24\left( - 1 \right) + 107 = 129\]

\[\text { Hence, the absolute maximum value when } x = - 2 \text { is } 139 .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.4 | Q 2 | पृष्ठ ३७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = - (x-1)2+2 on R ?


f(x)=| x+2 | on R .


f(x)=2x3 +5 on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = x\[-\] 1 on R .


f(x) = (x \[-\] 5)4.


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) = sin 2x, 0 < x < \[\pi\] .


f(x) =\[x\sqrt{1 - x} , x > 0\].


f(x) = x3\[-\] 6x2 + 9x + 15

 


f(x) = (x - 1) (x + 2)2.


f(x) = xex.


f(x) = (x \[-\] 1) (x \[-\] 2)2.


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


For the function f(x) = \[x + \frac{1}{x}\]


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×