मराठी

F ( X ) = 3 X 4 − 8 X 3 + 12 X 2 − 48 X + 25 in [ 0 , 3] - Mathematics

Advertisements
Advertisements

प्रश्न

`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .

बेरीज

उत्तर

\[\text { Given }: \hspace{0.167em} f\left( x \right) = 3 x^4 - 8 x^3 + 12 x^2 - 48x + 25\]

\[ \Rightarrow f'\left( x \right) = 12 x^3 - 24 x^2 + 24x - 48\]

\[\text { For a local maximum or a local minimum, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 12 x^3 - 24 x^2 + 24x - 48 = 0\]

\[ \Rightarrow x^3 - 2 x^2 + 2x - 4 = 0\]

\[ \Rightarrow x^2 \left( x - 2 \right) + 2\left( x - 2 \right) = 0\]

\[ \Rightarrow \left( x - 2 \right)\left( x^2 + 2 \right) = 0\]

\[ \Rightarrow x - 2 = 0 or \left( x^2 + 2 \right) = 0 \]

\[ \Rightarrow x = 2 \]

\[\text { No real root exists for } \left( x^2 + 2 \right) = 0 . \]

\[\text { Thus, the critical points of f are 0, 2 and 3 } . \]

\[\text { Now }, \]

\[f\left( 0 \right) = 3 \left( 0 \right)^4 - 8 \left( 0 \right)^3 + 12 \left( 0 \right)^2 - 48\left( 0 \right) + 25 = 25\]

\[f\left( 2 \right) = 3 \left( 2 \right)^4 - 8 \left( 2 \right)^3 + 12 \left( 2 \right)^2 - 48\left( 2 \right) + 25 = - 39\]

\[f\left( 3 \right) = 3 \left( 3 \right)^4 - 8 \left( 3 \right)^3 + 12 \left( 3 \right)^2 - 48\left( 3 \right) + 25 = 16\]

\[\text { Hence, the absolute maximum value when x = 0 is 25 and the absolute minimum value when x = 2 is - 39 } . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.4 | Q 1.3 | पृष्ठ ३७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = - (x-1)2+2 on R ?


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


f(x) = (x - 1) (x + 2)2.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


`f(x)=xsqrt(1-x),  x<=1` .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Find the maximum and minimum values of y = tan \[x - 2x\] .


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the minimum value of f(x) = xx .


Write the maximum value of f(x) = x1/x.


For the function f(x) = \[x + \frac{1}{x}\]


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


The minimum value of x loge x is equal to ____________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×