मराठी

F(X) = Sin X − Cos X, 0 < X<2 π . - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .

बेरीज

उत्तर

\[\text { Given: } \hspace{0.167em} f\left( x \right) = \sin x - \cos x\]

\[ \Rightarrow f'\left( x \right) = \cos x + \sin x\]

\[\text { For a local maximum or a local minimum, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow \cos x + \sin x = 0\]

\[ \Rightarrow \cos x = - \sin x\]

\[ \Rightarrow \tan x = - 1\]

\[ \Rightarrow x = \frac{3\pi}{4} or \frac{7\pi}{4}\]

Sincef '(x) changes from positive to negative when x increases through \[\frac{3\pi}{4}\], x = \[\frac{3\pi}{4}\] is the point of local maxima.

The local maximum value of  f (x)  at x = \[\frac{3\pi}{4}\] is given by \[\sin\left( \frac{3\pi}{4} \right) - \cos\left(\frac{3\pi}{4} \right) = \sqrt{2}\]

Since f '(x) changes from negative to positive when x increases through \[\frac{7\pi}{4}\],x= \[\frac{7\pi}{4}\] is the point of local minima.

The local minimum value of  f (x)  at x = \[\frac{7\pi}{4}\]  is given by \[\sin\left( \frac{7\pi}{4} \right) - \cos\left(\frac{7\pi}{4} \right) = - \sqrt{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.2 | Q 8 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = - (x-1)2+2 on R ?


f(x)=| x+2 | on R .


f(x) = | sin 4x+3 | on R ?


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = x\[-\] 3x .


f(x) = x3  (x \[-\] 1).


f(x) =  (x \[-\] 1) (x+2)2


f(x) =  cos x, 0 < x < \[\pi\] .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) =\[x\sqrt{1 - x} , x > 0\].


f(x) = x3\[-\] 6x2 + 9x + 15

 


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write the minimum value of f(x) = xx .


The maximum value of x1/x, x > 0 is __________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


If x+y=8, then the maximum value of xy is ____________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×