Advertisements
Advertisements
प्रश्न
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
उत्तर
To prove: the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is 6√3 r
Let ABC is an isosceles triangle with AB = AC = x and BC = y
and a circle with center O and radius r is inscribed in triangle ABC
Since, O is incenter of the triangle. It divides the medians into 2:1
⇒ AO = 2r and OF = r
Using Pythagoras theorem in ∆ ABF:
\[{AF}^2 + {BF}^2 = {AB}^2\]
\[\Rightarrow {(3r)}^2 + {(\frac{y}{2})}^2 = x^2 . . . . . (1)\]
\[\text { Again, From }\Delta ADO, {(2r)}^2 = r^2 + {AD}^2\]
\[\Rightarrow 3 r^2 = {AD}^2 \]
\[\Rightarrow AD=\sqrt{3}r \]
\[\text { Now, BD=BF and EC=FC(Since tangents drawn from an external point are equal })\]
\[\text { Now, AD+DB=x}\]
\[\Rightarrow (\sqrt{3}r) + (\frac{y}{2}) = x\]
\[\Rightarrow \frac{y}{2} = x -\sqrt{3} ............. (2)\]
\[\begin{array}{l}\therefore {(3r)}^2 + {(x - \sqrt{3}r)}^2 = x^2 \\ \Rightarrow 9 r^2 + x^2 - 2\sqrt{3}rx + 3 r^2 = x^2 \\ \Rightarrow 12 r^2 = 2\sqrt{3}rx \\ \Rightarrow 6r = \sqrt{3}x \\ \Rightarrow x = \frac{6r}{\sqrt{3}}\end{array}\]
\[\begin{array}{l}\text { Now, From }(2), \\ \frac{y}{2} = \frac{6}{\sqrt{3}}r - \sqrt{3}r \\ \Rightarrow \frac{y}{2} = \frac{6\sqrt{3}}{3}r - \sqrt{3}r \\ \Rightarrow \frac{y}{2} = \frac{(6\sqrt{3} - 3\sqrt{3})r}{3} \\ \Rightarrow \frac{y}{2} = \frac{3\sqrt{3}r}{3} \\ \Rightarrow y = 2\sqrt{3}r \\ \text { Perimeter } = 2x + y \\ = 2\left( \frac{6}{\sqrt{3}}r \right) + 2\sqrt{3}r \\ = \frac{12}{\sqrt{3}}r + 2\sqrt{3}r \\ = \frac{12r + 6r}{\sqrt{3}} \\ = \frac{18}{\sqrt{3}}r \\ = \frac{18 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}r \\ = 6\sqrt{3}r\end{array}\]
APPEARS IN
संबंधित प्रश्न
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = (x \[-\] 5)4.
f(x) = (x \[-\] 1) (x+2)2.
f(x) = sin 2x, 0 < x < \[\pi\] .
f(x) = cos x, 0 < x < \[\pi\] .
f(x) =\[x\sqrt{1 - x} , x > 0\].
f(x) = (x - 1) (x + 2)2.
`f(x) = 2/x - 2/x^2, x>0`
`f(x) = x/2+2/x, x>0 `.
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the point where f(x) = x log, x attains minimum value.
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the minimum value of f(x) = xx .
The maximum value of x1/x, x > 0 is __________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .