मराठी

Find the Least Value of F(X) = a X + B X , Where A>0, B>0 and X>0 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .

बेरीज

उत्तर

\[\text { We have }, \]

\[f\left( x \right) = ax + \frac{b}{x}\]

\[ \Rightarrow f'\left( x \right) = a - \frac{b}{x^2}\]

\[\text { For a local maxima or a local minima, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow a - \frac{b}{x^2} = 0\]

\[ \Rightarrow x^2 = \frac{b}{a}\]

\[ \Rightarrow x = \sqrt{\frac{b}{a}}, - \sqrt{\frac{b}{a}}\]

\[\text { But, }x > 0 \]

\[ \Rightarrow x = \sqrt{\frac{b}{a}}\]

\[\text { Now }, \]

\[f''\left( x \right) = \frac{2b}{x^3}\]

\[\text { At }x = \sqrt{\frac{b}{a}} \]

\[f''\left( \sqrt{\frac{b}{a}} \right) = \frac{2b}{\left( \sqrt{\frac{b}{a}} \right)^3} = \frac{2 a^\frac{3}{2}}{b^\frac{1}{2}} > 0 .....................\left[ \because a > 0 \text{ and }b > 0 \right]\]

\[\text { So }, x = \sqrt{\frac{b}{a}} \text { is a point of local minimum }. \]

\[\text { Hence, the least value is }\]

\[f\left( \sqrt{\frac{b}{a}} \right) = a\sqrt{\frac{b}{a}} + \frac{b}{\sqrt{\frac{b}{a}}} = \sqrt{ab} + \sqrt{ab} = 2\sqrt{ab}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.6 [पृष्ठ ८०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.6 | Q 7 | पृष्ठ ८०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x)=sin 2x+5 on R .


f(x) = | sin 4x+3 | on R ?


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = x\[-\] 1 on R .


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  cos x, 0 < x < \[\pi\] .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


Find the maximum and minimum values of y = tan \[x - 2x\] .


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


Write the point where f(x) = x log, x attains minimum value.


Write the minimum value of f(x) = xx .


For the function f(x) = \[x + \frac{1}{x}\]


The number which exceeds its square by the greatest possible quantity is _________________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×