Advertisements
Advertisements
प्रश्न
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
पर्याय
0
maximum
minimum
none of these
उत्तर
none of these
\[\text { Given }: f\left( x \right) = 2 \sin 3x + 3 \cos 3x\]
\[ \Rightarrow f'\left( x \right) = 6 \cos 3x - 9 \sin 3x\]
\[\text { For a local minima or a local maxima, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 6 \cos 3x - 9 \sin 3x = 0\]
\[ \Rightarrow 6 \cos 3x = 9 \sin 3x\]
\[ \Rightarrow \frac{\sin 3x}{\cos 3x} = \frac{2}{3}\]
\[ \Rightarrow \tan 3x = \frac{2}{3} . . . \left( 1 \right)\]
\[\text { At x } = \frac{5\pi}{6}: \]
\[\tan 3x = \tan \frac{5\pi}{2}\]
\[ \Rightarrow \tan 3x = \tan \frac{\pi}{2}\]
\[\text { So,} \tan 3x \text { is not defined }. \left[ \tan 3x \neq \frac{2}{3} \text { is not satisfying eq } . \left( 1 \right) \right]\]
\[\text { Thus, }x = \frac{5\pi}{6}\text { is not a critical point } .\]
APPEARS IN
संबंधित प्रश्न
f(x) = 4x2 + 4 on R .
f(x) = 16x2 \[-\] 16x + 28 on R ?
f(x) = x3 \[-\] 3x .
f(x) = (x \[-\] 1) (x+2)2.
f(x) = x3 \[-\] 6x2 + 9x + 15 .
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
f(x) = (x - 1) (x + 2)2.
f(x) = xex.
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
`f(x)=xsqrt(1-x), x<=1` .
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
For the function f(x) = \[x + \frac{1}{x}\]
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.