English

At X= 5 π 6 F(X) = 2 Sin 3x + 3 Cos 3x is (A) 0 (B) Maximum (C) Minimum (D) None of These - Mathematics

Advertisements
Advertisements

Question

At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .

Options

  • 0

  • maximum

  • minimum

  • none of these

MCQ

Solution

none of these

 

\[\text { Given }: f\left( x \right) = 2 \sin 3x + 3 \cos 3x\]

\[ \Rightarrow f'\left( x \right) = 6 \cos 3x - 9 \sin 3x\]

\[\text { For a local minima or a local maxima, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 6 \cos 3x - 9 \sin 3x = 0\]

\[ \Rightarrow 6 \cos 3x = 9 \sin 3x\]

\[ \Rightarrow \frac{\sin 3x}{\cos 3x} = \frac{2}{3}\]

\[ \Rightarrow \tan 3x = \frac{2}{3} . . . \left( 1 \right)\]

\[\text { At x } = \frac{5\pi}{6}: \]

\[\tan 3x = \tan \frac{5\pi}{2}\]

\[ \Rightarrow \tan 3x = \tan \frac{\pi}{2}\]

\[\text { So,} \tan 3x \text { is not defined }. \left[ \tan 3x \neq \frac{2}{3} \text { is not satisfying eq } . \left( 1 \right) \right]\]

\[\text { Thus, }x = \frac{5\pi}{6}\text {  is not a critical point } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.7 [Page 81]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.7 | Q 11 | Page 81

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = 4x2 + 4 on R .


f(x) = - (x-1)2+2 on R ?


f(x) = x\[-\] 1 on R .


f(x) = x\[-\] 3x .


f(x) =  (x \[-\] 1) (x+2)2


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) =\[x\sqrt{1 - x} , x > 0\].


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) = x4 \[-\] 62x2 + 120x + 9.


`f(x) = 2/x - 2/x^2,  x>0`


`f(x) = x/2+2/x, x>0 `.


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the maximum value of f(x) = x1/x.


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×