Advertisements
Advertisements
Question
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
Options
3
`3/4`
1
none of these
Solution
1
\[\text { Given: } f\left( x \right) = x^2 + x + 1\]
\[ \Rightarrow f'\left( x \right) = 2x + 1\]
\[\text { For a local maxima or a local minima, we must have } \]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 2x + 1 = 0\]
\[ \Rightarrow 2x = - 1\]
\[ \Rightarrow x = \frac{- 1}{2} \not\in \left[ 0, 1 \right]\]
\[\text { At extreme points } : \]
\[ f\left( 0 \right) = 0\]
\[f\left( 1 \right) = 1 + 1 + 1 = 3 > 0\]
\[\text { So, x = 1 is a local minima }. \]
APPEARS IN
RELATED QUESTIONS
f(x) = 16x2 \[-\] 16x + 28 on R ?
f(x) = x3 \[-\] 3x .
`f(x)=sin2x-x, -pi/2<=x<=pi/2`
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
`f(x) = 2/x - 2/x^2, x>0`
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write sufficient conditions for a point x = c to be a point of local maximum.
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the minimum value of f(x) = xx .
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
The number which exceeds its square by the greatest possible quantity is _________________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
If x+y=8, then the maximum value of xy is ____________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.