English

Show that the Height of the Cylinder of Maximum Volume that Can Be Inscribed a Sphere of Radius R is 2 R √ 3 . - Mathematics

Advertisements
Advertisements

Question

Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]

Sum

Solution

\[\text{ Let the height and radius of the base of the cylinder be h and r, respectively . Then }, \]

\[\frac{h^2}{4} + r^2 = R^2 \]

\[ \Rightarrow h = 2\sqrt{R^2 - r^2} ............. \left( 1 \right)\]

\[\text { Volume of cylinder }, V = \pi r^2 h\]

\[\text { Squaring both sides, we get }\]

\[ \Rightarrow V^2 = \pi^2 r^4 h^2 \]

\[ \Rightarrow V^2 = 4 \pi^2 r^4 \left( R^2 - r^2 \right) ..............\left[ \text { From eq. } \left( 1 \right) \right]\]

\[\text { Now,} \]

\[Z = 4 \pi^2 \left( r^4 R^2 - r^6 \right)\]

\[ \Rightarrow \frac{dZ}{dr} = 4 \pi^2 \left( 4 r^3 R^2 - 6 r^5 \right)\]

\[\text { For maximum or minimum values of Z, we must have} \]

\[\frac{dZ}{dr} = 0\]

\[ \Rightarrow 4 \pi^2 \left( 4 r^3 R^2 - 6 r^5 \right) = 0\]

\[ \Rightarrow 4 r^3 R^2 = 6 r^5 \]

\[ \Rightarrow 6 r^2 = 4 R^2 \]

\[ \Rightarrow r^2 = \frac{4 R^2}{6}\]

\[ \Rightarrow r = \frac{2R}{\sqrt{6}}\]

\[\text { Substituting the value of r in eq. }\left( 1 \right), \text { we get }\]

\[ \Rightarrow h = 2\sqrt{R^2 - \left( \frac{2R}{\sqrt{6}} \right)^2}\]

\[ \Rightarrow h = 2\sqrt{\frac{6 R^2 - 4 R^2}{6}}\]

\[ \Rightarrow h = 2\sqrt{\frac{R^2}{3}}\]

\[ \Rightarrow h = \frac{2R}{\sqrt{3}}\]

\[\text { Now,} \]

\[ \frac{d^2 Z}{d r^2} = 4 \pi^2 \left( 12 r^2 R^2 - 30 r^4 \right)\]

\[ \Rightarrow \frac{d^2 Z}{d r^2} = 4 \pi^2 \left( 12 \left( \frac{2R}{\sqrt{6}} \right)^2 R^2 - 30 \left( \frac{2R}{\sqrt{6}} \right)^4 \right)\]

\[ \Rightarrow \frac{d^2 Z}{d r^2} = 4 \pi^2 \left( 8 R^4 - \frac{80 R^4}{6} \right)\]

\[ \Rightarrow \frac{d^2 Z}{d r^2} = 4 \pi^2 \left( \frac{48 R^4 - 80 R^4}{6} \right)\]

\[ \Rightarrow \frac{d^2 Z}{d r^2} = 4 \pi^2 \left( - \frac{16 R^4}{3} \right) < 0\]

\[\text { So, volume of the cylinder is maximum when } h = \frac{2R}{\sqrt{3}} . \]

\[\text { Hence proved }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.5 [Page 73]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.5 | Q 17 | Page 73

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = 4x2 + 4 on R .


f(x)=sin 2x+5 on R .


f(x) = | sin 4x+3 | on R ?


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = (x \[-\] 5)4.


f(x) = x3  (x \[-\] 1).


f(x) =  (x \[-\] 1) (x+2)2


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =\[x\sqrt{1 - x} , x > 0\].


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Find the maximum and minimum values of y = tan \[x - 2x\] .


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write the point where f(x) = x log, x attains minimum value.


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


The maximum value of x1/x, x > 0 is __________ .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×