English

If F(X) = X3 + Ax2 + Bx + C Has a Maximum at X = − 1 and Minimum at X = 3. Determine A, B and C ? - Mathematics

Advertisements
Advertisements

Question

If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?

Sum

Solution

\[\text { We have,} \]

\[f\left( x \right) = x^3 + a x^2 + bx + c\]

\[ \Rightarrow f'\left( x \right) = 3 x^2 + 2ax + b\]

\[\text { As,} f\left( x \right) \text { is maximum at x = - 1 and minimum at x = 3 }. \]

\[\text { So,} f\left( - 1 \right) = 0 \text { and } f\left( 3 \right) = 0\]

\[ \Rightarrow 3 \left( - 1 \right)^2 + 2a\left( - 1 \right) + b = 0\text {  and }3 \left( 3 \right)^2 + 2a\left( 3 \right) + b = 0\]

\[ \Rightarrow 3 - 2a + b = 0 . . . . . \left( i \right)\]

\[\text { and }27 + 6a + b = 0 . . . . . \left( ii \right)\]

\[\left( ii \right) - \left( i \right), \text { we get }\]

\[27 - 3 + 6a + 2a = 0\]

\[ \Rightarrow 8a = - 24\]

\[ \Rightarrow a = - 3\]

\[\text { Substituting a } = - 3 \text { in } \left( i \right), \text { we get }\]

\[3 - 2\left( - 3 \right) + b = 0\]

\[ \Rightarrow 3 + 6 + b = 0\]

\[ \Rightarrow b = - 9\]

\[\text { And }, c \in R\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.3 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.3 | Q 7 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = 4x2 + 4 on R .


f(x) = - (x-1)2+2 on R ?


f(x)=sin 2x+5 on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = (x \[-\] 5)4.


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write sufficient conditions for a point x = c to be a point of local maximum.


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


Write the maximum value of f(x) = x1/x.


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×