Advertisements
Advertisements
Question
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Solution
\[\text { Given }: f\left( x \right) = \left( x - 2 \right)\sqrt{x - 1}\]
\[ \Rightarrow f'\left( x \right) = \sqrt{x - 1} + \frac{\left( x - 2 \right)}{2\sqrt{x - 1}}\]
\[\text { For a local maximum or a local minimum, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow \sqrt{x - 1} + \frac{\left( x - 2 \right)}{2\sqrt{x - 1}} = 0\]
\[ \Rightarrow 2\left( x - 1 \right) + \left( x - 2 \right) = 0\]
\[ \Rightarrow 2x - 2 + x - 2 = 0\]
\[ \Rightarrow 3x - 4 = 0\]
\[ \Rightarrow 3x = 4 \]
\[ \Rightarrow x = \frac{4}{3} \]
\[\text { Thus, the critical points of f are } 1, \frac{4}{3} \text { and } 9 . \]
\[\text { Now }, \]
\[ f\left( 1 \right) = \left( 1 - 2 \right)\sqrt{1 - 1} = 0\]
\[ f\left( \frac{4}{3} \right) = \left( \frac{4}{3} - 2 \right)\sqrt{\frac{4}{3} - 1} = \frac{- 2}{3} \times \frac{1}{\sqrt{3}} = - \frac{2}{3\sqrt{3}}\]
\[ f\left( 9 \right) = \left( 9 - 2 \right)\sqrt{9 - 1} = 14\sqrt{2}\]
\[\text { Hence, the absolute maximum value when x } = 9 \text{ is }14\sqrt{2}\text { and the absolute minimum value when x } = \frac{4}{3} \text{ is }- \frac{2}{3\sqrt{3}} . \]
Notes
The solution given in the book is incorrect . The solution here is created according to the question given in the book
APPEARS IN
RELATED QUESTIONS
f(x)=| x+2 | on R .
f(x)=sin 2x+5 on R .
f(x) = \[\frac{1}{x^2 + 2}\] .
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
f(x) =\[x\sqrt{1 - x} , x > 0\].
`f(x) = 2/x - 2/x^2, x>0`
`f(x) = x/2+2/x, x>0 `.
Find the maximum and minimum values of y = tan \[x - 2x\] .
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
Write sufficient conditions for a point x = c to be a point of local maximum.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the maximum value of f(x) = x1/x.
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .
The minimum value of x loge x is equal to ____________ .
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.