English

The Minimum Value of F(X) = X 4 − X 2 − 2 X + 6 is (A) 6 (B) 4 (C) 8 (D) None of These - Mathematics

Advertisements
Advertisements

Question

The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .

Options

  • 6

  • 4

  • 8

  • none of these

MCQ

Solution

`4`

 

\[\text { Given:} f\left( x \right) = x^4 - x^2 - 2x + 6\]

\[ \Rightarrow f'\left( x \right) = 4 x^3 - 2x - 2\]

\[ \Rightarrow f'\left( x \right) = \left( x - 1 \right)\left( 4 x^2 + 4x + 2 \right)\]

\[\text { For a local maxima or a local minima, we must have } \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow \left( x - 1 \right)\left( 4 x^2 + 4x + 2 \right) = 0\]

\[ \Rightarrow \left( x - 1 \right) = 0\]

\[ \Rightarrow x = 1\]

\[\text { Now,} \]

\[f''\left( x \right) = 12 x^2 - 2\]

\[ \Rightarrow f''\left( 1 \right) = 12 - 2 = 10 > 0\]

\[\text { So, x = 1 is a local minima } . \]

\[\text { The local minimum value is given by }\]

\[f\left( 1 \right) = 1 - 1 - 2 + 6 = 4\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.7 [Page 81]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.7 | Q 6 | Page 81

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x)=2x3 +5 on R .


f(x) = (x \[-\] 5)4.


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) = sin 2x, 0 < x < \[\pi\] .


f(x) =  cos x, 0 < x < \[\pi\] .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) =\[x\sqrt{1 - x} , x > 0\].


f(x) = x4 \[-\] 62x2 + 120x + 9.


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write sufficient conditions for a point x = c to be a point of local maximum.


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


For the function f(x) = \[x + \frac{1}{x}\]


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×