English

For the Function F(X) = X + 1 X (A) X = 1 is a Point of Maximum (B) X = − 1 is a Point of Minimum (C) Maximum Value > Minimum Value (D) Maximum Value< Minimum Value - Mathematics

Advertisements
Advertisements

Question

For the function f(x) = \[x + \frac{1}{x}\]

Options

  • x = 1 is a point of maximum

  • x = \[-\] 1 is a point of minimum

  • maximum value > minimum value

  • maximum value < minimum value

MCQ

Solution

\[\text { maximum value < minimum value}\]

 

\[\text { Given:} f\left( x \right) = x + \frac{1}{x}\]

\[ \Rightarrow f'\left( x \right) = 1 - \frac{1}{x^2}\]

\[\text { For a local maxima or a local minima, we must have} \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 1 - \frac{1}{x^2} = 0\]

\[ \Rightarrow x^2 - 1 = 0\]

\[ \Rightarrow x^2 = 1\]

\[ \Rightarrow x = \pm 1\]

\[\text { Now }, \]

\[f''\left( x \right) = \frac{2}{x^3}\]

\[ \Rightarrow f''\left( 1 \right) = \frac{2}{1} = 2 > 0\]

\[\text { So, x = 1 is a local minima.}\]

\[\text { Also }, \]

\[f''\left( - 1 \right) = - 2 < 0\]

\[\text {So, x = - 1 is a localmaxima }.\]

\[\text { The local minimum value is given by }\]

\[f\left( 1 \right) = 2\]

\[\text { The local maximum value is given by }\]

\[f\left( - 1 \right) = - 2\]

\[ \therefore \text { Maximum value < Minimum value }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.7 [Page 81]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.7 | Q 4 | Page 81

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = - (x-1)2+2 on R ?


f(x) = x\[-\] 3x .


f(x) = x3  (x \[-\] 1).


f(x) =  x\[-\] 6x2 + 9x + 15 . 


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) = x4 \[-\] 62x2 + 120x + 9.


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write sufficient conditions for a point x = c to be a point of local maximum.


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


If x+y=8, then the maximum value of xy is ____________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The minimum value of x loge x is equal to ____________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×