Advertisements
Advertisements
Question
For the function f(x) = \[x + \frac{1}{x}\]
Options
x = 1 is a point of maximum
x = \[-\] 1 is a point of minimum
maximum value > minimum value
maximum value < minimum value
Solution
\[\text { maximum value < minimum value}\]
\[\text { Given:} f\left( x \right) = x + \frac{1}{x}\]
\[ \Rightarrow f'\left( x \right) = 1 - \frac{1}{x^2}\]
\[\text { For a local maxima or a local minima, we must have} \]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 1 - \frac{1}{x^2} = 0\]
\[ \Rightarrow x^2 - 1 = 0\]
\[ \Rightarrow x^2 = 1\]
\[ \Rightarrow x = \pm 1\]
\[\text { Now }, \]
\[f''\left( x \right) = \frac{2}{x^3}\]
\[ \Rightarrow f''\left( 1 \right) = \frac{2}{1} = 2 > 0\]
\[\text { So, x = 1 is a local minima.}\]
\[\text { Also }, \]
\[f''\left( - 1 \right) = - 2 < 0\]
\[\text {So, x = - 1 is a localmaxima }.\]
\[\text { The local minimum value is given by }\]
\[f\left( 1 \right) = 2\]
\[\text { The local maximum value is given by }\]
\[f\left( - 1 \right) = - 2\]
\[ \therefore \text { Maximum value < Minimum value }\]
APPEARS IN
RELATED QUESTIONS
f(x) = - (x-1)2+2 on R ?
f(x) = x3 \[-\] 3x .
f(x) = x3 (x \[-\] 1)2 .
f(x) = x3 \[-\] 6x2 + 9x + 15 .
`f(x)=sin2x-x, -pi/2<=x<=pi/2`
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
f(x) = x4 \[-\] 62x2 + 120x + 9.
f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .
Find the point at which M is maximum in a given case.
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write sufficient conditions for a point x = c to be a point of local maximum.
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
Let f(x) = x3+3x2 \[-\] 9x+2. Then, f(x) has _________________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
If x+y=8, then the maximum value of xy is ____________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .
The minimum value of x loge x is equal to ____________ .