English

F(X) = 4x − X 2 2 in [ − 2,4,5] . - Mathematics

Advertisements
Advertisements

Question

f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .

Sum

Solution

\[\text { Given }: f\left( x \right) = 4x - \frac{x^2}{2}\]

\[ \Rightarrow f'\left( x \right) = 4 - x\]

\[\text { For a local maximum or a local minimum, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 4 - x = 0\]

\[ \Rightarrow x = 4\]

\[\text { Thus, the critical points of f are - 2, 4 and 4 . 5 } . \]

\[\text { Now }, \]

\[f\left( - 2 \right) = 4\left( - 2 \right) - \frac{\left( - 2 \right)^2}{2} = - 8 - 2 = - 10\]

\[f\left( 4 \right) = 4\left( 4 \right) - \frac{\left( 4 \right)^2}{2} = 16 - 8 = 8\]

\[f\left( 4 . 5 \right) = 4\left( 4 . 5 \right) - \frac{\left( 4 . 5 \right)^2}{2} = 18 - 10 . 125 = 7 . 875\]

\[\text { Hence, the absolute maximum value when x = 4 is 8 and the absolute minimum value when } x = - 2 \text{ is } - 10 . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.4 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.4 | Q 1.1 | Page 37

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x)=| x+2 | on R .


f(x) = x\[-\] 1 on R .


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) = sin 2x, 0 < x < \[\pi\] .


f(x) =  cos x, 0 < x < \[\pi\] .


f(x) = x3\[-\] 6x2 + 9x + 15

 


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Find the maximum and minimum values of y = tan \[x - 2x\] .


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write sufficient conditions for a point x = c to be a point of local maximum.


Write the point where f(x) = x log, x attains minimum value.


Write the minimum value of f(x) = xx .


Write the maximum value of f(x) = x1/x.


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×