English

A Beam is Supported at the Two End and is Uniformly Loaded. the Bending Moment M at a Distance X from One End is Given by M = W L 2 X − W 2 X 2 . Find the Point at Which M is Maximum in Case. - Mathematics

Advertisements
Advertisements

Question

A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.

Sum

Solution

\[\text { Given }: \hspace{0.167em} M = \frac{WL}{2}x - \frac{W}{2} x^2 \]

\[ \Rightarrow \frac{dM}{dx} = \frac{WL}{2} - 2 \times \frac{Wx}{2}\]

\[ \Rightarrow \frac{dM}{dx} = \frac{WL}{2} - Wx\]

\[\text { For maximum or minimum values of M, we must have }\]

\[\frac{dM}{dx} = 0\]

\[ \Rightarrow \frac{WL}{2} - Wx = 0\]

\[ \Rightarrow \frac{WL}{2} = Wx\]

\[ \Rightarrow x = \frac{L}{2}\]

\[\text { Now,} \]

\[\frac{d^2 M}{d x^2} = - W < 0\]

\[\text { So,M is maximum at }x = \frac{L}{2} . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.5 [Page 72]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.5 | Q 6.1 | Page 72

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = | sin 4x+3 | on R ?


f(x)=2x3 +5 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


`f(x) = 2/x - 2/x^2,  x>0`


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Find the maximum and minimum values of y = tan \[x - 2x\] .


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


Write the minimum value of f(x) = xx .


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


If x+y=8, then the maximum value of xy is ____________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×