Advertisements
Advertisements
Question
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Solution
\[\text { Let the height, radius of base and volume of the cone be h, r and V, respectively . Then, } \]
\[h = R + \sqrt{R^2 - r^2}\]
\[ \Rightarrow h - R = \sqrt{R^2 - r^2}\]
\[\text { Squaring both the sides, we get}\]
\[ h^2 + R^2 - 2hR = R^2 - r^2 \]
\[ \Rightarrow r^2 = 2hR - h^2 ........ \left( 1 \right)\]
\[\text { Now,} \]
\[V = \frac{1}{3}\pi r^2 h\]
\[ \Rightarrow V = \frac{\pi}{3}\left( 2 h^2 R - h^3 \right) ..............\left[ \text {From eq. } \left( 1 \right) \right]\]
\[ \Rightarrow \frac{dV}{dh} = \frac{\pi}{3}\left( 4hR - 3 h^2 \right)\]
\[\text { For maximum or minimum values of V, we must have }\]
\[\frac{dV}{dh} = 0\]
\[ \Rightarrow \frac{\pi}{3}\left( 4hR - 3 h^2 \right) = 0\]
\[ \Rightarrow 4hR = 3 h^2 \]
\[ \Rightarrow h = \frac{4R}{3}\]
\[\text { Now,} \]
\[\frac{d^2 V}{d h^2} = \frac{\pi}{3}\left( 4R - 6h \right)\]
\[ \Rightarrow \frac{\pi}{3}\left( 4R - 8R \right) = 0\]
\[ \Rightarrow \frac{- 4\pi R}{3} < 0\]
\[\text { So, the volume is maximum when h } = \frac{4R}{3} . \]
\[ \Rightarrow h = \frac{4 \times 12}{3} = 16 cm\]
APPEARS IN
RELATED QUESTIONS
f(x)=| x+2 | on R .
f(x)=sin 2x+5 on R .
f(x) = | sin 4x+3 | on R ?
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = (x \[-\] 1) (x+2)2.
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
f(x) = x4 \[-\] 62x2 + 120x + 9.
f(x) = (x - 1) (x + 2)2.
`f(x) = 2/x - 2/x^2, x>0`
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .
Find the point at which M is maximum in a given case.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
The total cost of producing x radio sets per day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
For the function f(x) = \[x + \frac{1}{x}\]
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
The number which exceeds its square by the greatest possible quantity is _________________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?