English

The Sum of the Surface Areas of a Sphere and a Cube is Given. Show that When the Sum of Their Volumes is Least, the Diameter of the Sphere is Equal to the Edge of the Cube. - Mathematics

Advertisements
Advertisements

Question

The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 
Sum

Solution

Let r be the radius of the sphere, x be the side of the cube and S be the sum of the surface area of both. Then, \[S = 4\pi r^2 + 6 x^2\]

\[\Rightarrow\]\[x = \left( \frac{S - 4\pi r^2}{6} \right)^\frac{1}{2}\]     ................(1)

Sum of volumes, V= \[\frac{4}{3}\pi r^3 + x^3\]

\[\Rightarrow\] V = \[\frac{4\pi r^3}{3} + \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{3}{2}\]  [From eq. (1)]

\[\Rightarrow \frac{dV}{dr} = 4\pi r^2 - 2\pi r \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{1}{2}\]

For the minimum or maximum values of V, we must have \[\frac{dV}{dr} = 0\]       ..............(2)

\[\Rightarrow 4\pi r^2 - 2\pi r \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{1}{2} = 0 \left[ \text { From eq } . \left( 2 \right) \right]\]

\[ \Rightarrow 4\pi r^2 = 2\pi r \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{1}{2} \]

\[ \Rightarrow 4\pi r^2 = 2\pi r x ..............\left[ \text { From eq }. \left( 1 \right) \right] \]

\[ \Rightarrow x = 2r\]

Now,

\[\frac{d^2 V}{d r^2} = 8\pi r - 2\pi \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{1}{2} - \frac{2\pi r}{2} \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^{- \frac{1}{2}} \frac{\left( - 8\pi r \right)}{6}\]

\[ \Rightarrow \frac{d^2 V}{d r^2} = 8\pi r - 2\pi \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{1}{2} + \frac{4}{3} \pi^2 r^2 \left[ \frac{6}{\left( S - 4\pi r^2 \right)} \right]^\frac{1}{2} \]

\[ \Rightarrow \frac{d^2 V}{d r^2} = 8\pi r - 2\pi x + \frac{4}{3} \pi^2 r^2 \frac{1}{x} = 8\pi r - 4\pi r + \frac{2}{3} \pi^2 r\]

\[ \Rightarrow \frac{d^2 V}{d r^2} = 4\pi r + \frac{2}{3} \pi^2 r > 0\]

So, volume is minimum when x = 2r.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.5 [Page 74]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.5 | Q 40 | Page 74

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = - (x-1)2+2 on R ?


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = x\[-\] 3x .


f(x) =  (x \[-\] 1) (x+2)2


f(x) =  x\[-\] 6x2 + 9x + 15 . 


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) = x4 \[-\] 62x2 + 120x + 9.


f(x) = (x - 1) (x + 2)2.


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write necessary condition for a point x = c to be an extreme point of the function f(x).


Write sufficient conditions for a point x = c to be a point of local maximum.


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Write the point where f(x) = x log, x attains minimum value.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


For the function f(x) = \[x + \frac{1}{x}\]


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×