हिंदी

The Sum of the Surface Areas of a Sphere and a Cube is Given. Show that When the Sum of Their Volumes is Least, the Diameter of the Sphere is Equal to the Edge of the Cube. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 
योग

उत्तर

Let r be the radius of the sphere, x be the side of the cube and S be the sum of the surface area of both. Then, \[S = 4\pi r^2 + 6 x^2\]

\[\Rightarrow\]\[x = \left( \frac{S - 4\pi r^2}{6} \right)^\frac{1}{2}\]     ................(1)

Sum of volumes, V= \[\frac{4}{3}\pi r^3 + x^3\]

\[\Rightarrow\] V = \[\frac{4\pi r^3}{3} + \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{3}{2}\]  [From eq. (1)]

\[\Rightarrow \frac{dV}{dr} = 4\pi r^2 - 2\pi r \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{1}{2}\]

For the minimum or maximum values of V, we must have \[\frac{dV}{dr} = 0\]       ..............(2)

\[\Rightarrow 4\pi r^2 - 2\pi r \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{1}{2} = 0 \left[ \text { From eq } . \left( 2 \right) \right]\]

\[ \Rightarrow 4\pi r^2 = 2\pi r \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{1}{2} \]

\[ \Rightarrow 4\pi r^2 = 2\pi r x ..............\left[ \text { From eq }. \left( 1 \right) \right] \]

\[ \Rightarrow x = 2r\]

Now,

\[\frac{d^2 V}{d r^2} = 8\pi r - 2\pi \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{1}{2} - \frac{2\pi r}{2} \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^{- \frac{1}{2}} \frac{\left( - 8\pi r \right)}{6}\]

\[ \Rightarrow \frac{d^2 V}{d r^2} = 8\pi r - 2\pi \left[ \frac{\left( S - 4\pi r^2 \right)}{6} \right]^\frac{1}{2} + \frac{4}{3} \pi^2 r^2 \left[ \frac{6}{\left( S - 4\pi r^2 \right)} \right]^\frac{1}{2} \]

\[ \Rightarrow \frac{d^2 V}{d r^2} = 8\pi r - 2\pi x + \frac{4}{3} \pi^2 r^2 \frac{1}{x} = 8\pi r - 4\pi r + \frac{2}{3} \pi^2 r\]

\[ \Rightarrow \frac{d^2 V}{d r^2} = 4\pi r + \frac{2}{3} \pi^2 r > 0\]

So, volume is minimum when x = 2r.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.5 | Q 40 | पृष्ठ ७४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = - (x-1)2+2 on R ?


f(x)=| x+2 | on R .


f(x)=sin 2x+5 on R .


f (x) = \[-\] | x + 1 | + 3 on R .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


`f(x) = 2/x - 2/x^2,  x>0`


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


`f(x)=xsqrt(1-x),  x<=1` .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Find the maximum and minimum values of y = tan \[x - 2x\] .


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


Write the point where f(x) = x log, x attains minimum value.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×