Advertisements
Advertisements
प्रश्न
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
उत्तर
\[\text { Given: } \hspace{0.167em} f\left( x \right) = 2 \sin x - x\]
\[ \Rightarrow f'\left( x \right) = 2 \cos x - 1\]
\[\text { For a local maximum or a local minimum, we must have }\]
\[ f'\left( x \right) = 0\]
\[ \Rightarrow 2 \cos x - 1 = 0\]
\[ \Rightarrow \cos x = \frac{1}{2}\]
\[ \Rightarrow x = \frac{\pi}{3} or \frac{- \pi}{3}\]
Sincef '(x) changes from positive to negative when x increases through \[\frac{\pi}{3}\] x = \[\frac{\pi}{3}\] is the point of local maxima.
The local maximum value of f (x) at x = \[\frac{\pi}{3}\] is given by \[2 \sin \left( \frac{\pi}{3} \right) - \frac{\pi}{3} = \sqrt{3} - \frac{\pi}{3}\]
Since f '(x) changes from negative to positive when x increases through \[- \frac{\pi}{3}\] x = \[- \frac{\pi}{3}\] is the point of local minima.
The local minimum value of f (x) at x = \[- \frac{\pi}{3}\] is given by \[2 \sin \left( \frac{- \pi}{3} \right) + \frac{\pi}{3} = \frac{\pi}{3} - \sqrt{3}\]
APPEARS IN
संबंधित प्रश्न
f(x) = - (x-1)2+2 on R ?
f(x)=| x+2 | on R .
f(x)=sin 2x+5 on R .
f(x)=2x3 +5 on R .
f(x) = (x \[-\] 5)4.
f(x) = cos x, 0 < x < \[\pi\] .
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
f(x) = x4 \[-\] 62x2 + 120x + 9.
f(x) = xex.
`f(x) = x/2+2/x, x>0 `.
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Find the maximum and minimum values of y = tan \[x - 2x\] .
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write the point where f(x) = x log, x attains minimum value.
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the maximum value of f(x) = x1/x.
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
Let f(x) = x3+3x2 \[-\] 9x+2. Then, f(x) has _________________ .
The minimum value of x loge x is equal to ____________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.
Which of the following graph represents the extreme value:-