Advertisements
Advertisements
प्रश्न
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
उत्तर
\[\text { Here }, \]
\[f\left( x \right) = \frac{\log x}{x}\]
\[ \Rightarrow f'\left( x \right) = \frac{1 - \log x}{x^2}\]
\[\text { For the local maxima or minima, we must have }\]
\[ f'\left( x \right) = 0\]
\[ \Rightarrow \frac{1 - \log x}{x^2} = 0\]
\[ \Rightarrow 1 = \log x\]
\[ \Rightarrow \log e = \log x\]
\[ \Rightarrow x = e\]
\[\text { Now,} \]
\[f''\left( x \right) = \frac{x^2 \left( \frac{- 1}{x} \right) - 2x\left( 1 - \log x \right)}{x^4} = \frac{- 3 + 2 \log x}{x^3}\]
\[ \Rightarrow f''\left( e \right) = \frac{- 3 + 2 \log e}{e^3} = \frac{- 1}{e^3} < 0\]
\[\text { So, x = e is the point of local maximum }.\]
APPEARS IN
संबंधित प्रश्न
`f(x)=sin2x-x, -pi/2<=x<=pi/2`
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
f(x) =\[x\sqrt{1 - x} , x > 0\].
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
`f(x)=xsqrt(1-x), x<=1` .
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .
Find the point at which M is maximum in a given case.
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the minimum value of f(x) = xx .
For the function f(x) = \[x + \frac{1}{x}\]
Let f(x) = x3+3x2 \[-\] 9x+2. Then, f(x) has _________________ .
The number which exceeds its square by the greatest possible quantity is _________________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
If x+y=8, then the maximum value of xy is ____________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .