Advertisements
Advertisements
प्रश्न
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
उत्तर
\[\text { Let r and h be the radius and height of the cylinder, respectively . Then, } \]
\[\text { Volume }\left( V \right) \text { of the cylinder } = \pi r^2 h\]
\[ \Rightarrow 100 = \pi r^2 h\]
\[ \Rightarrow h = \frac{100}{\pi r^2}\]
\[\text { Surface area }\left( S \right) \text { of the cylinder} = 2\pi r^2 + 2\pi r h = 2\pi r^2 + 2\pi r \times \frac{100}{\pi r^2}\]
\[ \Rightarrow S = 2\pi r^2 + \frac{200}{r}\]
\[ \therefore \frac{dS}{dr} = 4\pi r - \frac{200}{r^2} \]
\[\text { For the maximum or minimum, we must have }\]
\[ \frac{dS}{dr} = 0\]
\[ \Rightarrow 4\pi r - \frac{200}{r^2} = 0\]
\[ \Rightarrow 4\pi r^3 = 200\]
\[ \Rightarrow r = \left( \frac{50}{\pi} \right)^\frac{1}{3} \]
\[\text { Now,} \]
\[ \frac{d^2 S}{d r^2} = 4\pi + \frac{400}{r^3}\]
\[ \Rightarrow \frac{d^2 S}{d r^2} > 0 \text { when r } = \left( \frac{50}{\pi} \right)^\frac{1}{3} \]
\[\text { Thus, the surface area is minimum when r =} \left( \frac{50}{\pi} \right)^\frac{1}{3} . \]
\[\text { At r }= \left( \frac{50}{\pi} \right)^\frac{1}{3} : \]
\[h = \frac{100}{\pi \left( \frac{50}{\pi} \right)^\frac{2}{3}} = 2 \left( \frac{50}{\pi} \right)^\frac{1}{3}\]
APPEARS IN
संबंधित प्रश्न
f(x) = 4x2 + 4 on R .
f(x) = - (x-1)2+2 on R ?
f(x)=| x+2 | on R .
f(x) = 16x2 \[-\] 16x + 28 on R ?
f(x) = x3 \[-\] 1 on R .
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
Find the maximum and minimum values of y = tan \[x - 2x\] .
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write sufficient conditions for a point x = c to be a point of local maximum.
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the point where f(x) = x log, x attains minimum value.
Write the maximum value of f(x) = x1/x.
For the function f(x) = \[x + \frac{1}{x}\]
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .