Advertisements
Advertisements
प्रश्न
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
विकल्प
75
50
25
55
उत्तर
75
\[\text { Given }: f\left( x \right) = x^2 + \frac{250}{x}\]
\[ \Rightarrow f'\left( x \right) = 2x - \frac{250}{x^2}\]
\[\text { For a local maxima or a local minima, we must have } \]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 2x - \frac{250}{x^2} = 0\]
\[ \Rightarrow 2 x^3 - 250 = 0\]
\[ \Rightarrow x^3 = 125\]
\[ \Rightarrow x = 5\]
\[\text { Now,} \]
\[f''\left( x \right) = 2 + \frac{500}{x^3}\]
\[ \Rightarrow f''\left( 5 \right) = 2 + \frac{500}{5^3} = \frac{750}{125} = 6 > 0\]
\[\text { So, x = 5 is a local minima } . \]
\[ \therefore f' \left( x \right)_\min = 5^2 + \frac{250}{5} = \frac{375}{5} = 75\]
APPEARS IN
संबंधित प्रश्न
f(x)=sin 2x+5 on R .
f(x) = x3 \[-\] 6x2 + 9x + 15 .
f(x) = x4 \[-\] 62x2 + 120x + 9.
f(x) = x3\[-\] 6x2 + 9x + 15
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .
Find the point at which M is maximum in a given case.
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the minimum value of f(x) = xx .
Write the maximum value of f(x) = x1/x.
The maximum value of x1/x, x > 0 is __________ .
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
Let f(x) = x3+3x2 \[-\] 9x+2. Then, f(x) has _________________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .