हिंदी

If(X) = X+ 1 X ,X > 0, Then Its Greatest Value is (A) − 2 (B) 0 (C) 3 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .

विकल्प

  • -2

  • 0

  • 3

  • none of these

MCQ

उत्तर

none of these

 

\[\text { Given }: f\left( x \right) = x + \frac{1}{x}\]

\[ \Rightarrow f'\left( x \right) = 1 - \frac{1}{x^2}\]

\[\text { For a local maxima or a local minima, we must have } \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 1 - \frac{1}{x^2} = 0\]

\[ \Rightarrow x^2 - 1 = 0\]

\[ \Rightarrow x^2 = 1\]

\[ \Rightarrow x = \pm 1\]

\[ \Rightarrow x = 1 ................\left( \text { Given }: x>0 \right)\]

\[\text { Now,} \]

\[f''\left( x \right) = \frac{2}{x^3}\]

\[ \Rightarrow f''\left( 1 \right) = 2 > 0\]

\[\text { So, x = 1 is a local minima } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.7 | Q 21 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x)=sin 2x+5 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = x\[-\] 1 on R .


f(x) =  (x \[-\] 1) (x+2)2


f(x) =\[x\sqrt{1 - x} , x > 0\].


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) = x4 \[-\] 62x2 + 120x + 9.


f(x) = x3\[-\] 6x2 + 9x + 15

 


`f(x) = 2/x - 2/x^2,  x>0`


f(x) = xex.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


Write sufficient conditions for a point x = c to be a point of local maximum.


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×