हिंदी

The Minimum Value of F(X) = X 4 − X 2 − 2 X + 6 is (A) 6 (B) 4 (C) 8 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .

विकल्प

  • 6

  • 4

  • 8

  • none of these

MCQ

उत्तर

`4`

 

\[\text { Given:} f\left( x \right) = x^4 - x^2 - 2x + 6\]

\[ \Rightarrow f'\left( x \right) = 4 x^3 - 2x - 2\]

\[ \Rightarrow f'\left( x \right) = \left( x - 1 \right)\left( 4 x^2 + 4x + 2 \right)\]

\[\text { For a local maxima or a local minima, we must have } \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow \left( x - 1 \right)\left( 4 x^2 + 4x + 2 \right) = 0\]

\[ \Rightarrow \left( x - 1 \right) = 0\]

\[ \Rightarrow x = 1\]

\[\text { Now,} \]

\[f''\left( x \right) = 12 x^2 - 2\]

\[ \Rightarrow f''\left( 1 \right) = 12 - 2 = 10 > 0\]

\[\text { So, x = 1 is a local minima } . \]

\[\text { The local minimum value is given by }\]

\[f\left( 1 \right) = 1 - 1 - 2 + 6 = 4\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.7 | Q 6 | पृष्ठ ८१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = - (x-1)2+2 on R ?


f(x)=2x3 +5 on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) =  (x \[-\] 1) (x+2)2


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) = sin 2x, 0 < x < \[\pi\] .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) = x4 \[-\] 62x2 + 120x + 9.


f(x) = x3\[-\] 6x2 + 9x + 15

 


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


`f(x)=xsqrt(1-x),  x<=1` .


Find the maximum and minimum values of y = tan \[x - 2x\] .


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


Write the point where f(x) = x log, x attains minimum value.


Write the minimum value of f(x) = xx .


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


For the function f(x) = \[x + \frac{1}{x}\]


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


The minimum value of x loge x is equal to ____________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×