Advertisements
Advertisements
प्रश्न
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
विकल्प
3
`3/4`
1
none of these
उत्तर
1
\[\text { Given: } f\left( x \right) = x^2 + x + 1\]
\[ \Rightarrow f'\left( x \right) = 2x + 1\]
\[\text { For a local maxima or a local minima, we must have } \]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 2x + 1 = 0\]
\[ \Rightarrow 2x = - 1\]
\[ \Rightarrow x = \frac{- 1}{2} \not\in \left[ 0, 1 \right]\]
\[\text { At extreme points } : \]
\[ f\left( 0 \right) = 0\]
\[f\left( 1 \right) = 1 + 1 + 1 = 3 > 0\]
\[\text { So, x = 1 is a local minima }. \]
APPEARS IN
संबंधित प्रश्न
f(x) = - (x-1)2+2 on R ?
f(x)=| x+2 | on R .
f(x)=sin 2x+5 on R .
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = (x \[-\] 1) (x+2)2.
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
f(x) = x3\[-\] 6x2 + 9x + 15
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Find the maximum and minimum values of y = tan \[x - 2x\] .
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
The total cost of producing x radio sets per day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the minimum value of f(x) = xx .
The maximum value of x1/x, x > 0 is __________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .
The minimum value of x loge x is equal to ____________ .