Advertisements
Advertisements
प्रश्न
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
उत्तर
\[\text { Given }: \hspace{0.167em} s = \frac{t^4}{4} - 2 t^3 + 4 t^2 - 7\]
\[ \Rightarrow v = \frac{ds}{dt} = t^3 - 6 t^2 + 8t\]
\[ \Rightarrow a = \frac{dv}{dt} = 3 t^2 - 12t + 8\]
\[\text { For maximum or minimum values of v, we must have }\]
\[\frac{dv}{dt} = 0\]
\[ \Rightarrow 3 t^2 - 12t + 8 = 0\]
\[\text { On solving the equation, we get }\]
\[t = 2 \pm \frac{2}{\sqrt{3}}\]
\[\text { Now }, \]
\[\frac{d^2 v}{d t^2} = 6t - 12\]
\[\text {At t } = 2 - \frac{2}{\sqrt{3}}: \]
\[\frac{d^2 v}{d t^2} = 6\left( 2 - \frac{2}{\sqrt{3}} \right) - 12\]
\[ \Rightarrow \frac{- 12}{\sqrt{3}} < 0\]
\[\text { So, velocity is maximum at t } = \left( 2 - \frac{2}{\sqrt{3}} \right) . \]
\[\text { Again }, \]
\[\frac{da}{dt} = 6t - 12\]
\[\text { For maximum or minimum values of a, we must have }\]
\[\frac{da}{dt} = 0\]
\[ \Rightarrow 6t - 12 = 0\]
\[ \Rightarrow t = 2\]
\[\text { Now,} \]
\[\frac{d^2 a}{d t^2} = 6 > 0\]
\[\text { So, acceleration is minimum at t }=2.\]
APPEARS IN
संबंधित प्रश्न
f(x)=2x3 +5 on R .
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = x3 \[-\] 1 on R .
f(x) = x3 \[-\] 3x .
f(x) = x3 (x \[-\] 1)2 .
f(x) = \[\frac{1}{x^2 + 2}\] .
f(x) = x3 \[-\] 6x2 + 9x + 15 .
f(x) = (x - 1) (x + 2)2.
f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
Write the minimum value of f(x) = xx .
Write the maximum value of f(x) = x1/x.
The maximum value of x1/x, x > 0 is __________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .
Which of the following graph represents the extreme value:-