हिंदी

The Maximum Value of F(X) = X 4 − X + X 2 on [ − 1, 1] is (A) − 1 4 (B) − 1 3 (C) 1 6 (D) 1 5 - Mathematics

Advertisements
Advertisements

प्रश्न

The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .

विकल्प

  • \[ \frac{1}{4}\]

  • \[- \frac{1}{3}\]

  • \[\frac{1}{6}\]

  • \[\frac{1}{5}\]

MCQ

उत्तर

\[\text { Given: } f\left( x \right) = \frac{x}{4 - x + x^2}\]

\[ \Rightarrow f'\left( x \right) = \frac{4 - x + x^2 - x\left( - 1 + 2x \right)}{\left( 4 - x + x^2 \right)^2}\]

\[\text { For a local maxima or a local minima, we must have } \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow \frac{4 - x + x^2 - x\left( - 1 + 2x \right)}{\left( 4 - x + x^2 \right)^2} = 0\]

\[ \Rightarrow 4 - x + x^2 - x\left( - 1 + 2x \right) = 0\]

\[ \Rightarrow 4 - x + x^2 + x - 2 x^2 = 0\]

\[ \Rightarrow x^2 = 4\]

\[ \Rightarrow x =\pm 2 \not\in \left( - 1, 1 \right)\]

\[\text { So,} \]

\[f\left( - 1 \right) = \frac{- 1}{4 - \left( - 1 \right) + \left( - 1 \right)^2} = \frac{- 1}{6}\]

\[f\left( 1 \right) = \frac{1}{4 - 1 + 1^2} = \frac{1}{4}\]

\[\text { Hence, the maximum value is } \frac{1}{4} . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.7 | Q 14 | पृष्ठ ८१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x)=| x+2 | on R .


f(x) = | sin 4x+3 | on R ?


f(x) = (x \[-\] 5)4.


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  cos x, 0 < x < \[\pi\] .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) = (x - 1) (x + 2)2.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


Write sufficient conditions for a point x = c to be a point of local maximum.


The maximum value of x1/x, x > 0 is __________ .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×