हिंदी

F(X) = − ( X − 1 ) 3 ( X + 1 ) 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .

योग

उत्तर

\[\text { Given:} f\left( x \right) = - \left( x - 1 \right)^3 \left( x + 1 \right)^2 \]

\[ \Rightarrow f'\left( x \right) = - \left[ 3 \left( x - 1 \right)^2 \left( x + 1 \right)^2 + 2\left( x + 1 \right) \left( x - 1 \right)^3 \right]\]

\[\text { For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow - 3 \left( x - 1 \right)^2 \left( x + 1 \right)^2 - 2\left( x + 1 \right) \left( x - 1 \right)^3 = 0\]

\[ \Rightarrow \left( x - 1 \right)^2 \left( x + 1 \right)\left[ - 3\left( x + 1 \right) - 2\left( x - 1 \right) \right] = 0\]

\[ \Rightarrow \left( x - 1 \right)^2 \left( x + 1 \right)\left[ - 3x - 3 - 2x + 2 \right] = 0\]

\[ \Rightarrow \left( x - 1 \right)^2 \left( x + 1 \right)\left[ - 5x - 1 \right] = 0\]

\[ \Rightarrow x = 1, - 1 \text { and }\frac{- 1}{5}\]

\[\text { Thus, x = 1, x = - 1 and } x = \frac{- 1}{5} \text { are the possible points of local maxima or local minima }. \]

\[\text { Now,} \]

\[f''\left( x \right) = - \left[ 3\left\{ 2\left( x - 1 \right) \left( x + 1 \right)^2 + 2\left( x + 1 \right) \left( x - 1 \right)^2 \right\} + 2\left\{ \left( x - 1 \right)^3 + 3 \left( x - 1 \right)^2 \left( x + 1 \right) \right\} \right]\]

\[ = - 6\left( x - 1 \right) \left( x + 1 \right)^2 + 6\left( x + 1 \right) \left( x - 1 \right)^2 - 2 \left( x - 1 \right)^3 - 6 \left( x - 1 \right)^2 \left( x + 1 \right)\]

\[\text { At x} = 1: \]

\[ f''\left( 1 \right) = - 6\left( 1 - 1 \right) \left( 1 + 1 \right)^2 + 6\left( 1 + 1 \right) \left( 1 - 1 \right)^2 - 2 \left( 1 - 1 \right)^3 - 6 \left( 1 - 1 \right)^2 \left( 1 + 1 \right) = 0\]

\[\text { So, it is a point of inflexion } . \]

\[\text { At } x = - 1: \]

\[ f''\left( - 1 \right) = - 6\left( - 1 - 1 \right) \left( - 1 + 1 \right)^2 + 6\left( - 1 + 1 \right) \left( - 1 - 1 \right)^2 - 2 \left( - 1 - 1 \right)^3 - 6 \left( - 1 - 1 \right)^2 \left( - 1 + 1 \right) = 16 > 0\]

\[\text{ So, x = - 1 is the point of local minimum }. \]

\[\text { The local minimum value is given by } \]

\[f\left( - 1 \right) = - \left( 1 - 1 \right)^3 \left( - 1 + 1 \right)^2 = 0\]

\[\text { At } x = - \frac{1}{5}: \]

\[ f''\left( - \frac{1}{5} \right) = - 6\left( - \frac{1}{5} - 1 \right) \left( - \frac{1}{5} + 1 \right)^2 + 6\left( - \frac{1}{5} + 1 \right) \left( - \frac{1}{5} - 1 \right)^2 + 2 \left( - \frac{1}{5} - 1 \right)^3 - 6 \left( - \frac{1}{5} - 1 \right)^2 \left( - \frac{1}{5} + 1 \right)\]

\[ = \frac{576}{125} + \frac{384}{125} - \frac{432}{125} - \frac{864}{125} = \frac{- 336}{125} < 0\]

\[\text { So,} x = - \frac{1}{5} \text { is the point of local maximum }. \]

\[\text { The local maximum value is given by }\]

\[f\left( - \frac{1}{5} \right) = - \left( - \frac{1}{5} - 1 \right)^3 \left( - \frac{1}{5} + 1 \right)^2 = - \left( \frac{- 216}{125} \right)\left( \frac{16}{25} \right) = \frac{3465}{3125}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.3 | Q 2.3 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = | sin 4x+3 | on R ?


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


f(x) =\[x\sqrt{1 - x} , x > 0\].


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) = x3\[-\] 6x2 + 9x + 15

 


f(x) = (x - 1) (x + 2)2.


`f(x) = x/2+2/x, x>0 `.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


The maximum value of x1/x, x > 0 is __________ .


For the function f(x) = \[x + \frac{1}{x}\]


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


If x+y=8, then the maximum value of xy is ____________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×