Advertisements
Advertisements
प्रश्न
f(x) =\[x\sqrt{1 - x} , x > 0\].
उत्तर
\[\text { Given }: f\left( x \right) = x\sqrt{1 - x}\]
\[ \Rightarrow f'\left( x \right) = \sqrt{1 - x} - \frac{x}{2\sqrt{1 - x}} = \frac{2 - 3x}{2\sqrt{1 - x}}\]
\[\text { For the local maxima or minima, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow \frac{2 - 3x}{2\sqrt{1 - x}} = 0\]
\[ \Rightarrow x = \frac{2}{3}\]
Since, f '(x) changes from positive to negative when x increases through \[\frac{2}{3}\], x = \[\frac{2}{3}\] is a point of maxima.
The local maximum value of f (x) at x = \[\frac{2}{3}\] is given by \[\frac{2}{3}\sqrt{1 - \frac{2}{3}} = \frac{2}{3\sqrt{3}} = \frac{2\sqrt{3}}{9}\]
APPEARS IN
संबंधित प्रश्न
f(x)=| x+2 | on R .
f(x) = x3 \[-\] 1 on R .
f(x) = x3 \[-\] 3x .
f(x) = x3 (x \[-\] 1)2 .
f(x) = x3 \[-\] 6x2 + 9x + 15 .
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Find the maximum and minimum values of y = tan \[x - 2x\] .
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .
Find the point at which M is maximum in a given case.
Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the point where f(x) = x log, x attains minimum value.
Write the minimum value of f(x) = xx .
Let f(x) = x3+3x2 \[-\] 9x+2. Then, f(x) has _________________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .
The minimum value of x loge x is equal to ____________ .
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.
Which of the following graph represents the extreme value:-