हिंदी

Find the Largest Possible Area of a Right Angled Triangle Whose Hypotenuse is 5 Cm Long. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   

योग

उत्तर

\[\text { Let the base of the right angled triangle be x and its height be y . Then,} \]

\[ x^2 + y^2 = 5^2 \]

\[ \Rightarrow y^2 = 25 - x^2 \]

\[ \Rightarrow y = \sqrt{25 - x^2}\]

\[\text { As, the area of the triangle, }A = \frac{1}{2} \times x \times y\]

\[ \Rightarrow A\left( x \right) = \frac{1}{2} \times x \times \sqrt{25 - x^2}\]

\[ \Rightarrow A\left( x \right) = \frac{x\sqrt{25 - x^2}}{2}\]

\[ \Rightarrow A'\left( x \right) = \frac{\sqrt{25 - x^2}}{2} + \frac{x\left( - 2x \right)}{4\sqrt{25 - x^2}}\]

\[ \Rightarrow A'\left( x \right) = \frac{\sqrt{25 - x^2}}{2} - \frac{x^2}{2\sqrt{25 - x^2}}\]

\[ \Rightarrow A'\left( x \right) = \frac{25 - x^2 - x^2}{2\sqrt{25 - x^2}}\]

\[ \Rightarrow A'\left( x \right) = \frac{25 - 2 x^2}{2\sqrt{25 - x^2}}\]

\[\text { For maxima or minima, we must have } f'\left( x \right) = 0\]

\[A'\left( x \right) = 0\]

\[ \Rightarrow \frac{25 - 2 x^2}{2\sqrt{25 - x^2}} = 0\]

\[ \Rightarrow 25 - 2 x^2 = 0\]

\[ \Rightarrow 2 x^2 = 25\]

\[ \Rightarrow x = \frac{5}{\sqrt{2}}\]

\[\text { So, y } = \sqrt{25 - \frac{25}{2}}\]

\[ = \sqrt{\frac{50 - 25}{2}}\]

\[ = \sqrt{\frac{25}{2}}\]

\[ = \frac{5}{\sqrt{2}}\]

\[\text { Also,} A''\left( x \right) = \frac{\left[ - 4x\sqrt{25 - x^2} - \frac{\left( 25 - 2 x^2 \right)\left( - 2x \right)}{2\sqrt{25 - x^2}} \right]}{25 - x^2}\]

\[ = \frac{\left[ \frac{- 4x\left( 25 - x^2 \right) + \left( 25x - 2 x^3 \right)}{\sqrt{25 - x^2}} \right]}{25 - x^2}\]

\[ = \frac{- 100x + 4 x^3 + 25x - 2 x^3}{\left( 25 - x^2 \right)\sqrt{25 - x^2}}\]

\[ = \frac{- 75x + 2 x^3}{\left( 25 - x^2 \right)\sqrt{25 - x^2}}\]

\[ \Rightarrow A''\left( \frac{5}{\sqrt{2}} \right) = \frac{- 75\left( \frac{5}{\sqrt{2}} \right) + 2 \left( \frac{5}{\sqrt{2}} \right)^3}{\left( 25 - \left( \frac{5}{\sqrt{2}} \right)^2 \right)^\frac{3}{2}} < 0\]

\[So, x = \left( \frac{5}{\sqrt{2}} \right) \text { is point of maxima }. \]

\[ \therefore \text { The largest possible area of the triangle } = \frac{1}{2} \times \left( \frac{5}{\sqrt{2}} \right) \times \left( \frac{5}{\sqrt{2}} \right) = \frac{25}{4} \text { square units }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.5 | Q 10 | पृष्ठ ७३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x)=| x+2 | on R .


f(x)=sin 2x+5 on R .


f(x) = | sin 4x+3 | on R ?


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


f(x) = x4 \[-\] 62x2 + 120x + 9.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


Write sufficient conditions for a point x = c to be a point of local maximum.


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×