Advertisements
Advertisements
प्रश्न
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
विकल्प
`ab<c^2/4`
`ab>=c^2/4`
`ab>=c/4`
उत्तर
\[ \ ab \geq \frac{c^2}{4}\]
\[\text { Given }: ax + \frac{b}{x} \geq c\]
\[\text { Minimum value of} ax + \frac{b}{x} = c\]
\[\text { Now }, \]
\[f\left( x \right) = ax + \frac{b}{x}\]
\[ \Rightarrow f'\left( x \right) = a - \frac{b}{x^2}\]
\[\text { For a local maxima or a local minima, we must have}\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow a - \frac{b}{x^2} = 0\]
\[ \Rightarrow a x^2 - b = 0\]
\[ \Rightarrow a x^2 = b\]
\[ \Rightarrow x^2 = \frac{b}{a}\]
\[ \Rightarrow x = \pm \frac{\sqrt{b}}{\sqrt{a}}\]
\[f''\left( x \right) = \frac{2b}{x^3}\]
\[ \Rightarrow f''\left( x \right) = \frac{2b}{\left( \frac{\sqrt{b}}{\sqrt{a}} \right)^3}\]
\[ \Rightarrow f''\left( x \right) = \frac{2b \left( a \right)^\frac{3}{2}}{\left( b \right)^\frac{3}{2}} > 0\]
\[\text { So }, x = \frac{\sqrt{b}}{\sqrt{a}} \text { is a local minima } . \]
\[ \therefore f\left( \frac{\sqrt{b}}{\sqrt{a}} \right) = a\left( \frac{\sqrt{b}}{\sqrt{a}} \right) + \frac{b}{\left( \frac{\sqrt{b}}{\sqrt{a}} \right)} \geq c\]
\[ = \sqrt{a}\sqrt{a}\left( \frac{\sqrt{b}}{\sqrt{a}} \right) + \frac{\sqrt{b}\sqrt{b}}{\left( \frac{\sqrt{b}}{\sqrt{a}} \right)} \geq c\]
\[ = \sqrt{ab} + \sqrt{ab} \geq c\]
\[ \Rightarrow 2\sqrt{ab} \geq c\]
\[ \Rightarrow \frac{c}{2} \leq \sqrt{ab}\]
\[ \Rightarrow \frac{c^2}{4} \leq ab\]
APPEARS IN
संबंधित प्रश्न
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = x3 \[-\] 1 on R .
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
f(x) = x4 \[-\] 62x2 + 120x + 9.
`f(x)=xsqrt(1-x), x<=1` .
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
Find the maximum and minimum values of y = tan \[x - 2x\] .
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
The total cost of producing x radio sets per day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
The maximum value of x1/x, x > 0 is __________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .
The minimum value of x loge x is equal to ____________ .
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.