हिंदी

F(X) = X4 − 62x2 + 120x + 9. - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = x4 \[-\] 62x2 + 120x + 9.

योग

उत्तर

\[\text { Given: }f\left( x \right) = x^4 - 62 x^2 + 120x + 9\]

\[ \Rightarrow f'\left( x \right) = 4 x^3 - 124x + 120\]

\[\text {For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow 4 x^3 - 124x + 120 = 0\]

\[ \Rightarrow x^3 - 31x + 30 = 0\]

\[ \Rightarrow \left( x - 1 \right)\left( x^2 + x - 30 \right) = 0\]

\[ \Rightarrow \left( x - 1 \right)\left( x + 6 \right)\left( x - 5 \right) = 0\]

\[ \Rightarrow x = 1, 5 \text { and } - 6\]

\[\text { Thus, x = 1, x = 5 and x = - 6 are the possible points of local maxima or local minima} . \]

\[\text { Now,} \]

\[f''\left( x \right) = 12 x^2 - 124\]

`"At "x = 1 :-`

\[f''\left( 1 \right) = 12 \left( 1 \right)^2 - 124 = - 112 < 0\]

\[\text { So, x = 1 is the point of local maximum} . \]

\[\text { The local maximum value is given by }\]

\[f\left( 1 \right) = 1^4 - 62 \left( 1 \right)^2 + 120 \times 1 + 9 = 68\]

\[\text { At } x = 5: \]

\[ f''\left( 5 \right) = 12 \left( 5 \right)^2 - 124 = 176 > 0\]

\[\text { So, x = 5 is the point of local minimum }. \]

\[\text { The local minimum value is given by }\]

\[f\left( 5 \right) = 5^4 - 62 \left( 5 \right)^2 + 120 \times 5 + 9 = - 316\]

\[\text { At }x = - 6: \]

\[ f''\left( - 6 \right) = 12 \left( - 6 \right)^2 - 124 = 308 > 0\]

\[\text { So, x = - 6 is the point of local maximum }. \]

\[\text { The local minimum value is given by } \]

\[f\left( - 6 \right) = \left( - 6 \right)^4 - 62 \left( - 6 \right)^2 + 120 \times \left( - 6 \right) + 9 = - 1647\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.3 | Q 1.01 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x) = 4x2 + 4 on R .


f(x) = - (x-1)2+2 on R ?


f(x)=2x3 +5 on R .


f(x) = x\[-\] 1 on R .


f(x) = (x \[-\] 5)4.


f(x) = x3  (x \[-\] 1).


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) = (x - 1) (x + 2)2.


f(x) = xex.


`f(x) = x/2+2/x, x>0 `.


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


The maximum value of x1/x, x > 0 is __________ .


For the function f(x) = \[x + \frac{1}{x}\]


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×