Advertisements
Advertisements
प्रश्न
f(x) = xex.
उत्तर
\[\text { Given: } \hspace{0.167em} f\left( x \right) = x e^x \]
\[ \Rightarrow f'\left( x \right) = e^x + x e^x \]
\[\text { For the local maxima or minima, we must have }\]
\[ f'\left( x \right) = 0\]
\[ \Rightarrow e^x + x e^x = 0\]
\[ \Rightarrow e^x \left( 1 + x \right) = 0\]
\[ \Rightarrow e^x \neq 0 , x = - 1\]
\[ \Rightarrow x = - 1\]
\[\text { Thus, x = - 1 is the possible point of local maxima or local minima } . \]
\[\text { Now,} \]
\[f''\left( x \right) = e^x + e^x + x e^x \]
\[\text { At } x = - 1: \]
\[ f''\left( - 1 \right) = e^{- 1} + e^{- 1} - e^{- 1} = e^{- 1} > 0\]
\[\text { So, x = - 1 is the point of local minimum } . \]
\[\text { The local minimum value is given by }\]
\[f\left( - 1 \right) = - e^{- 1} = - \frac{1}{e}\]
APPEARS IN
संबंधित प्रश्न
f(x)=| x+2 | on R .
f(x)=sin 2x+5 on R .
f(x) = x3 \[-\] 1 on R .
f(x) = cos x, 0 < x < \[\pi\] .
`f(x)=sin2x-x, -pi/2<=x<=pi/2`
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
`f(x) = 2/x - 2/x^2, x>0`
`f(x) = x/2+2/x, x>0 `.
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the point where f(x) = x log, x attains minimum value.
The number which exceeds its square by the greatest possible quantity is _________________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
If x+y=8, then the maximum value of xy is ____________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .