English

F(X) = Xex. - Mathematics

Advertisements
Advertisements

Question

f(x) = xex.

Sum

Solution

\[\text { Given: } \hspace{0.167em} f\left( x \right) = x e^x \]

\[ \Rightarrow f'\left( x \right) = e^x + x e^x \]

\[\text { For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow e^x + x e^x = 0\]

\[ \Rightarrow e^x \left( 1 + x \right) = 0\]

\[ \Rightarrow e^x \neq 0 , x = - 1\]

\[ \Rightarrow x = - 1\]

\[\text { Thus, x = - 1 is the possible point of local maxima or local minima } . \]

\[\text { Now,} \]

\[f''\left( x \right) = e^x + e^x + x e^x \]

\[\text { At } x = - 1: \]

\[ f''\left( - 1 \right) = e^{- 1} + e^{- 1} - e^{- 1} = e^{- 1} > 0\]

\[\text { So, x = - 1 is the point of local minimum } . \]

\[\text { The local minimum value is given by }\]

\[f\left( - 1 \right) = - e^{- 1} = - \frac{1}{e}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.3 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.3 | Q 1.05 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = 4x2 + 4 on R .


f(x)=| x+2 | on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = x\[-\] 3x .


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


f(x) =\[x\sqrt{1 - x} , x > 0\].


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the maximum value of f(x) = x1/x.


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


If x+y=8, then the maximum value of xy is ____________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×