English

F ( X ) = X 2 + 2 X , X > 0 - Mathematics

Advertisements
Advertisements

Question

`f(x) = x/2+2/x, x>0 `.

Sum

Solution

\[\text { Given }: \hspace{0.167em} f\left( x \right) = \frac{x}{2} + \frac{2}{x}\]

\[ \Rightarrow f'\left( x \right) = \frac{1}{2} - \frac{2}{x^2}\]

\[\text { For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow \frac{1}{2} - \frac{2}{x^2} = 0\]

\[ \Rightarrow x^2 = 4\]

\[ \Rightarrow x = 2\text { and } - 2\]

\[\text { Thus, x = 2 and x = - 2 are the possible points of local maxima or a local minima } . \]

\[\text { Since }x > 0, x = 2\]

\[\text { Now,} \]

\[f''\left( x \right) = \frac{4}{x^3}\]

\[\text { At }x = 2: \]

\[ f''\left( 2 \right) = \frac{4}{\left( 2 \right)^3} = \frac{1}{2} > 0\]

\[\text { So, x = 2 is the point of local minimum } . \]

\[\text { The local minimum value is given by } \]

\[f\left( 2 \right) = \frac{x}{2} + \frac{2}{x} = 1 + 1 = 2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.3 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.3 | Q 1.06 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x)=sin 2x+5 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) = sin 2x, 0 < x < \[\pi\] .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


Write necessary condition for a point x = c to be an extreme point of the function f(x).


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


For the function f(x) = \[x + \frac{1}{x}\]


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


If x+y=8, then the maximum value of xy is ____________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×