English

Find the Point on the Curvey Y2=2x Which is at a Minimum Distance from the Point (1,4). - Mathematics

Advertisements
Advertisements

Question

Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).

Sum

Solution

\[\text { Suppose a point  }\left( x, y \right)\text { on the curve } y^2 = 2x \text { is nearest to the point }\left( 1, 4 \right) . \text { Then }, \]

\[ y^2 = 2x\]

\[ \Rightarrow x = \frac{y^2}{2} . . . \left( 1 \right)\]

\[ d^2 = \left( x - 1 \right)^2 + \left( y - 4 \right)^2 ...................\left[\text { Using distance formula } \right]\]

\[\text { Now,} \]

\[Z = d^2 = \left( x - 1 \right)^2 + \left( y - 4 \right)^2 \]

\[ \Rightarrow Z = \left( \frac{y^2}{2} - 1 \right)^2 + \left( y - 4 \right)^2 .......................\left[ \text { From eq. } \left( 1 \right) \right]\]

\[ \Rightarrow Z = \frac{y^4}{4} + 1 - y^2 + y^2 + 16 - 8y\]

\[ \Rightarrow \frac{dZ}{dy} = y^3 - 8\]

\[\text { For maximum or minimum values of Z, we must have }\]

\[\frac{dZ}{dy} = 0\]

\[ \Rightarrow y^3 - 8 = 0\]

\[ \Rightarrow y^3 = 8\]

\[ \Rightarrow y = 2\]

\[\text { Substituting the value of y in } \left( 1 \right),\text {  we get }\]

\[x = 2\]

\[\text { Now,} \]

\[\frac{d^2 Z}{d y^2} = 3 y^2 \]

\[ \Rightarrow \frac{d^2 Z}{d y^2} = 12 > 0\]

\[\text { So, the required nearest point is } \left( 2, 2 \right) .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.5 [Page 74]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.5 | Q 34 | Page 74

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = - (x-1)2+2 on R ?


f(x)=| x+2 | on R .


f(x) = (x \[-\] 5)4.


f(x) = x3  (x \[-\] 1).


f(x) = sin 2x, 0 < x < \[\pi\] .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


`f(x)=xsqrt(1-x),  x<=1` .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Find the maximum and minimum values of y = tan \[x - 2x\] .


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write sufficient conditions for a point x = c to be a point of local maximum.


The maximum value of x1/x, x > 0 is __________ .


For the function f(x) = \[x + \frac{1}{x}\]


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


If x+y=8, then the maximum value of xy is ____________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×